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ABSTRACT
GREAT SPHERE FIBRATIONS OF MANIFOLDS
John Petro, Author

Herman R. Gluck, Supervisor

STATEMENT‘ OF PROBLEM: If E is a smoo closed manifold

which is smoothly fibred by k-spheres gnd smoothly embedded

Nl)

in sV (the unit N-sphere in R + sad that these

k-sphere fibres appear as great k-spherles in SI‘T then we
say that E is fibred by great k-spheres.)There are three
questions that guifie our study: (1) given two such fibrations
are they topologically equivalent, (2) is it possible to
deform one suef?’ fibration to .another through a one parameter
family of eueﬁ/ fibrations, and .(3) what ;is the homotopy

type of the space of all mﬁ/ fibrations? We address

these queétions for great circle fibr?tions of odd
di.mensa'.onali round spheres and arbitrary great k-sphere

fibrations, of—8%-x-8%- c- Smtm’l“.'g g

RESULTS: Let M be the base space of a great circle

fibration of Szn-l. We show there are two complex structures
on ®?M giving embeddings i, and i, of ep™ 1 into

1 2
%’2 RZn such that there exists a homotopy

g :Ix ot iy 3'2 R?® with g, equal to for j =1 or 2

i
H'
- J
and g, = ieh where h : ﬂ:Pn-!'—'M is a homotopy equi-
valence and i : M—oa'z R®?" is the natural embedding of M.

We next turn to great k-sphere fibrations of

o .




s™ x s® and prove a number of general statements
concerning the existence or non-existence of great k-sphere

fibrations depending on k , m and n. Our other major

’

i
¥
Y
. b

result is a complete answer to the three questions above

for great 3-sphere fibrations of S3 x S3 c S7.

Finally we give an example of a great 3-sphere

'h.."‘g A

fibration of S7 with no orthogonal pairs of fibres. This

4 is in contrast to the situation for great circle fibrations
3 3

¢;3 of S .
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SECTION I

Let E be a smooth closed n-manifold which

e S

a) smoothly fibred by k-spheres, and
b) smoothly embedded in sN (the unit
N-sphere in RNH') s0 that these k-sphere

fibres appear as great k-spheres in su .

We say simply that E is fibred by great k-spheres.

Such situations arise quite naturally in the study of
the Blaschke Problem in Differential Geometry; Section II
gives some of this background information. Most of the time,
in these applications, E is itself a round sphere but
occasionally it is not, and in Section V the relatively
unexplored area of great k-~sphere fibrations of arbitrary

manifolds is addressed.

If B¢ sN is fibred by great k-spheres there is a

hierarchy of three questions, in increasing order of

difficulty, which may be posed:

1) Given two such fibrations, are they
topologically equivalent?

2) If they are topologically equivalent, is

P 1?};’;(‘1“ ‘- ) .‘ ..‘:* ‘.-'._ - .‘:'--,-:st‘\1“'~.‘.-"-.\:-\u L \.;_.
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A it possible to deform one to the other

! through a one-parameter family of such

§§ fibrations?

‘1 A 3) What is the homotopy type of the space of

e

R all such fibrations?

g

et In general, even question 1 remains unanswered for all but
:, the simplest cases. Recently all three questions were

n answered for great circle fibrations of the round 3-sphere
ey

A [G‘W] .

Most of this thesis is concerned with a search for

answers to these questions.

Pros gL LY

v S e me

A good example to keep in mind is that of 3-sphere

fibrations of the 7-sphere. There are infintely many

topologically inequivalent smooth 3-sphere fibrations of

-
v

-~

;} the 7-sphere [MI]). By our Theorem B, each such fibration
% may be pictured as a fibration by great 3-spheres, provided
.f‘ we choose a suitable embedding of the 7-sphere into a large
;%; dimensional sphere sN . If we insist that the 7-sphere

L% 8

appear as the unit sphere in R~ , then every smooth

o

fibration of it by great 3-spheres is topologically equiva-

lent to the Hopf fibration [G-W-Y]. So while the question




e 3 4.
.. of the topological equivalence of all 3-sphere fibrations
of the 7-sphere has a negative answer, if one restricts the

: question to the topological equivalence of all great

)
SZ 3-sphere fibrations of s7 the answer becomes affirmative. b
S This illustrates the general expectation, namely, when ]
we lower the dimension of the sphere in which we permit the
.: total space to be embedded or place geometric constraints on !
' the topological type of the total space we correspondingly
f. restrict the bundles whose fibres can thus be made into

great k-spheres. It is in this way that the geometric ]
» theory departs from the topological theory.

; The study of great circle fibrations of round spheres
2 is of particular importance because of its direct connection !
'j with the identification of Blaschke manifolds modelled on 1
‘ ' complex projective spaces (see Section II). In such purposes

S‘ _ it is essential to answer Question 1, in this case: are
;3 . all great circle fibrations of a round sphere topologically
equivalent?

:; If P : 81 - sZn-l -_ HF is a great circle

‘ (
. fibration of the unit sphere in :l!2n , We may orient the

#°
-8

£ibres and then embed the base space MP in a natural way

W
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E 4
| as a submanifold of the Grassmann manifold 'G'zmzn of

§ oriented 2-planes in 2n-space, the embedding denoted by

‘ * ’Lp « We show that there are two embeddings of complex

’: projective n-1 space, l:Pn_l , into 'EZJR 2n , distinct up
‘.' to homotopy inside '521! 2n s, which represent in the above

v. fashion two different versions of the classical Hopf fibra-
£ tion of s271 by great circles. Denoting these embeddings
by inl and iﬂz , in Section III we prove

é THEOREM A. There exists a homotopy g : -I X EPn-l _—

"' 'é'zmzn such that g, equals one of inl or iﬂz and

2. g, = J'P'hl-‘ s Where }%z I:Pn-l - MP is a homotopy

) equivalence.

)

‘. In other words, given a fibration F of s2ml by

;; . oriented great circles, one of the two Hopf fibrations Hl
A and H, can be selected (depending on F), and its orbit

' space deformed within the Grassmann manifold until it

‘ coincides, via a homotopy equivalence, with the orbit space
; of F . This is a step towards proving that every great
circle fibration of a round spherel is topologically equiva-
? lent to a Hopf fibration.

;

5 _ If Eg g2n~1l . o . fibration by great (n-1)-spheres
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then the notion of two (n-1l)-sphere fibres being orthogonal
makes sense. In [G-W] it is proven that every great circle
fibration of 83 has an orthogonal pair of fibres. From an
analysis of the proof of this result and other theorems in
[G-W] one concludes that this fact is equivalent to the
Borsuk-Ulam theorem for maps of S2 to :IR2 . Based on
this it seems natural to ask if every great 3-sphere
fibration of s7 , and every great 7-sphere fibration of
s15 , should likewise have an orthogonal pair of fibres. 1In

Section IV we show that this need not be the case by giving

EXAMPLE. There exists a great 3-sphere fibration of S7

with no orthogonal pair of fibres.

A similar approach provides a corresponding example for

great 7-sphere fibrations of S15 .

In Section V, we study great sphere fibrations of

more general manifolds. We begin by proving

THEOREM B. Let € : Sk ~> E —> B Dbe a smooth k-sphere

bundle with group O(k+l) over the compact base space B .

Then the total space E can be smoothly embedded into sN
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for N sufficiently large so that each k-sphere fibre

becomes a great k-sphere in SN .

In other words, all reasonable k-sphere bundles can
be pictured with great k-sphere fibres by embedding the

total space into a large dimensional sphere.

The results in [G-W] and [G-W-Y] deal with fibrations
of the round sphere s” by great k-spheres. The next
simplest case to study seems to be pr sq embedded in

sp+q+1 by dividing all lengths in the product metric by

JE . The rest of Section V is devoted to a study of fibra- |
tions of sPx s9 by great k-spheres. 5

After a few general pronouncements aboﬁt such fibra-
tions, we begin sampling the theory for small values of p ,
g and k . Great circle fibrations of Slx 53 prove to
be interesting and some elementary questions about them

remain unanswered. Another sample: 86x 813 admits no

i TR e o A . 38 B Ml P k" -~

fibrations by great k-spheres for any kX > 1 (while it
obviously admits fibrations by 1l-spheres, 6-spheres and
13-spheres if we drop the restriction that the fibration be

by great spheres in szo).

By far the richest and most satisfying theory we

. .0
...........
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f§ develop is for fibrations of s3x 83 by great 3-spheres.
:\1 .
% ’ We completely answer the three questions posed at the
w beginning when we prove
&
£
E THEOREM C. The space of all oriented great 3-sphere
’ fibrations of 83x 83 deformation retracts to the subspace
.,
‘; of *Hopf fibrations” and has the homotopy type of a disjoint
.
’ : union of four copies of real projective 3-space, ]RP3 .
1‘
% In the course of proving this we also get:
N
N 1) There is a 2 to 1 correspondence between ;
ig distance decreasing maps from 83 to s3
¥ and great 3-sphere fibrations of s3x s .
Py
2) These fibrations are smooth if and only if
& the distance decreasing map is smooth and
? the norm of its differential is strictly
o less than 1 .
4 .
- 3) Every such fibration has an orthogonal pair
i of fibres.
? These are analogous to results obtained in [G-W] for great
'2 circle fibrations of 83 .
L4

"o
't
’

e
~

»
b, -
ot
-

0
4
I
L 4
_..
3

Using Theorem C we prove

LR}
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THEOREM D. Every smooth great 3-sphere fibration of

ssx s3 can be extended to a smooth great 3-sphere fibra-

tion of S7 .
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SECTION 1I

The interest in the topological equivalence of

fibrations of s° 1

by great subspheres stems f£rom work on 4
the Blaschke conjecture. If M is a closed Riemannian #
1

manifold of dimension n , and a(t) = expp(tv) is a ‘ 3

geodesic with initial direction v , then the cut point of
P along a is the last point on a to which the geodesic
a minimizes distance from p . The cut locus of p, C(p),
is the set of all cut points along any geodesic emanating
from p . e is called a Blaschke manifold if the distance
from p to C(p) is a constant and this constant is
independent of p . It is known that the cut locus of any
point in an arbitrary Blaschke manifold M is either a
point or a smooth submanifold of dimension n-l1 , n-2 , or
n-4 , or else if n = 16 , the cut locus can be 8-dimen-
sional. Such an M' is said to be modelled on S" R RP" ’
an/z ,lﬂﬂv4 = quaternionic projective space of real
dimension n , or capz = Caley projective plane if n = 16,
respectively. It has been a long standing conjecture, first
attributed to Blaschke in 1921 for the case n = 2 [BL],
that any Blaschke manifold is isometric (up to change of

scale) to its model space. The conjecture has been
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answered in the affirmative for Mn modelled on Sn or
RP" and is open in all remaining cases [GR, BE, KA, WE,

YA-1].

The Blaschke conjecture is purely geometric in nature
and nothing is presumed about the topology of o .
Certainly a necessary condition for the truth of the

conjecture is that Mn be homeomorphic to its model space.

Let M" be a Blaschke manifold, p € M , and Mp the

tangent space to M at p . The exponential map

expp: Mp —~—> M takes a round ball B(p) centered at

0 € Mp onto M and takes 3B(p) to the cut locus C(p).

The following theorem which describes the exponential
mapping for a Blaschke manifold allows one to begin trying

to characterize M" topologically. It is due to Omori in

the real analytic case [OM], and to Nakagawa and Shiohama

in the differentiable case [N-S§ 1, N-S 2].

? THEOREM. If M" is a Blaschke manifold, then the cut locus
%

j::,;i C(p) to any point p € M is a smooth submanifold of M

£

and expps 3B(p) —> C(p) is a smooth fibre bundle.

Lj Moreover, the fibres are great subspheres of the round

sphere 23B(p).
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N 8o Mn is homeomorphic to the "mapping cone" of the

s,y T .

o2 £ibration expp: 3B (p) —> C(p), and to prove that any

o ] Blaschke manifold modelled on mpn‘,lnf‘, or capz is

; homeomorphic to its model space, it would be sufficient to

! prove the

CONJECTURE. Any smooth fibration of S" © by great sub-

S spheres is topologically equivalent to a Hopf fibration.

w3

:% This conjecture has recently been shown to have a positive
e

:3; answer for n < 9 and also for n = 16 and fibrations by
Lo great 7-spheres [G-W~Y].
-
- The key idea in [G-W-Y], first suggested by Warner, is
. to capitalize on the fact that the fibres are great subspheres
Ny

:j by viewing the orbit space inside the Grassmann manifold and
o studying its position there. Sections III and V of this
Jﬁ thesis pursue this point of view.
R?

%
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SECTION III
1l 2n-1
et F: 8§ —> S8 —_ uF be an arbitrary smooth
great circle fibration of SZn-l . We lose no generality in

assuming the fibres are oriented and thus the base space has

a natural embedding into ‘é’zmzn , 1 s lﬁ_, -_> Ezmzn .

F
As the base space of a great circle fibration of szn-l R

MF has the homotopy type of an-l ([G-W-Y), Sect 10) so

let h!': II:Pn-l _— % be a homotopy equivalence. 1In this

section we show that there are two embeddings, i and

H
n-1 o _ 2n
inz s of @P into GZ:R that correspond to Hopf
fibrations of SZn-l and are distinct up to homotopy in
Ezmzn « Our main result is:
THEOREM A. There exists a homotopy g : I x CPn-l —_> 'é'zm 2n

such that 99 equals one of :|.H1 or J.Hz and g, = J'F'}i? .
The proof proceeds by first showing

i? (H*(MF)) = iHj (H*(G:Pn-l)) for j either 1 or 2 (all
* *

homology and cohomology groups in this section have

coefficients in Z ). Using this information, the homotopy

information of "G'z:IR 2n

homotopy to homology we conclude that the obstructions to

and the Hurewicz homomorphism from .

constructing the homotopy g all vanish.

12
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; NOTATION AND CONVENTIONS.

?: 1) YA TRAREN denotes the standard ortho-

R normal basis vectors for :Rzn . We suppose

Y

43 2n _ n R

3 R € with iez:j-l = 32j and
iezj=-ezj_l,l$j$n,isJ-l.

N 2) H: st —> "1 Iy ¢p™1 s the standard
'."..‘3

S‘ | Hopf fibration. n(zl,zz, oo .,zn)= n(wl,wz, ces ,wn)
if and only if there exists \ € S c ¢

‘ B with z;, = ).wi s 1 Lin . This bundle is
5 oriented by the usual counterclockwise

. orientation on &€ . An equivalence class

W

in szn-l under the projection tn is denoted
J‘_‘f

by square brackets, [zl,zz,...,zn] =

‘:3 = ﬂ-liﬂ(z z XEYY 4 )o

X ;' 2°°°°2%n

:‘ 3) A: 'é’zm L Ezmzn will be the involution
p vhich sends an oriented 2-~plane to the same
. physical plane but with the opposite orienta-
s

i tion.

=

o 4) P € '52:!! 2n will always denote the oriented

o

J_ 2-plane spanned by the ordered frame (el,ez) .
$l
-~ A(P) = P op is spanned by the ordered frame

"

7 (e;58,) .

-,

4,

o,
-
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5) Let U = {Q e‘é’znz“: Qnp* = {0}}. For

1
1
L
LI} -
|

local coordinates about P we take the map

8

us U => R2(272) L pon(p,pd)

P

A AORD

where u(Q) is a (2n-2)x 2 matrix such

f that the graph of u(Q) as a map from P

3

Z with basis [el,ez] to P' with basis

& [e3,e4,...,ezn} is the plane Q . Here

g we assume

g 5‘1 *2n-1
: (%)s%pseeesXopn20%opn-17* %2 (2n-2)) ™ |®2 *an
X . .

X . .

N x x

) "2n-2 "2(2n-2)
:

4 identitries ®2(3"2) yitn Hom(p,P).

- 6) Finally we assume "G'ZJR 2n is oriented so

i 2(2n-2)

is orientation

that y : U —> R

. preserving, where Rr2(20-2) .5 its usual

bt feriles

orientation (we will see below that '521! 2n

is an orientable manifold).

We begin by assembling some results on the topology
2n

'

is the base space of an oriented circle
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fibration, the Stiefel bundle,

1l 2n .

. — 2n_g
B: S > V,R > G,R

where V :Il?.2n is the Stiefel manifold of oriented, ortho-

2
normal 2-frames in R2n R p((vl,vz)) is the oriented

2-plane spanned by the ordered frame (vl,vz) . From ([ST],

Sect 25.6) we get
ni(vzlf“) =0 1<4ig2n3

2n, _
Ton-2 (VoR ) =T .

The exact homotopy sequence of the Stiefel bundle now implies

nl(vzmzn) = ﬂl(szzn) = 0 so both manifolds are orientable.

By the Hurewicz Isomorphism Theorem we conclude

B (V,®%") =0 1¢1ig2n3

2n, _
Hy o(V,RT) =~z .

Now dim V.R2Z® = aim sz2n +1=2(2n-2) + 1 so since all

2
Bi(vzn 2n) s 1 £ 2n~2 are free, by Poincare duality we get:

" 5..'-."'. .',_.‘.-_;.'\.',Q ‘\“..--;,)-.;.‘: - -.-' - : - ;~ e e e h

P 9T Ve
S
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% :
& . 2n, _ i 2n, !%T i=0, 2n-2 , 2n-1 ,2(2n-2)+1
‘ Hy ‘Vzm ) =8 (Vzn ) {0 otherwise
2 {
& LEMMA 3.1.
g H.ER?) - @r?® - 0<ig2m2, 3407
2% 232 2 Z+Z j=n-1
8 |
and 0 in all other dimensions. Furthermore, one generator
for HzJ (5211 2n), 1<3<n-1 in e(B)J where e(B) is
; the Euler class of the Stiefel bundle.

PROOF: From the Gysin sequence of the Stiefel bundle, for
»
2 1<ig 2n-4 , we get
;.'}

0 =8 (VR — 5" l@r?®

K 2 2
1}
‘v
‘-’ LELB_)_> n:i.-l-l (azmzn) — n:l+1 (v2m2n) = 0
o Hence
i ni(a nzn) i} 0 i odd, i L 2n-3 3
) 2 2 i=2j, i< 2n-4 with e(B)’ as
& generator.
v For i = 2n-3 :
J
Y
d
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H2n-3 (Vzl! Zn) - H2:1-4 (EZIR 2n) Ue (B) S l:!211-2 ('é'zl! 2n)
I I
. - 0 z

- nzn-z(vzm Zn) - I_121'1-3 (,Ezmzn)

! I

z 0

By exactness we conclude H2n-2 ('é'zl! 2n) =~ X + X with

e(B)n-l as one generator. Now apply duality, using the
fact that all groups are torsion-free, to conclude the

proof. QED.

Our next objective is to find specific representatives

of generators for H, . (a'zn 2% e+ Z. Let g2n-2

denote the unit (2n-2)-sphere contained in szn~—1 = mzn

determined by szn-l n el"‘ « There is a map

S szn"2 -_— vzltzn given by £(x) = (el,x) and £
2n 2n

represents a generator of Ton-2 (Vz‘.IR ) - Hzn_z(vzn )

: ([8T]), S8ect 25.6).

1mon 3.2. If [(52%2] and [€P™"!] denote fundamental
cycles in H, . (szn-z) and H, 2(II:Pn-:I') respectively,
then (p-£),(187"7) ana 1y , ((e2""1)) generate

..................

................................

.................................
.........

‘‘‘‘‘‘‘‘

-----------------
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PROOF: From the dual Gysin sequence in homology for the

Stiefel bundle we have

o~ 2n 2n Py 2n
O=H GR™) —>H, (VL,R") —>H, ,CR™)

2n-3"' 2
. 2n-2
so since f£_([S ]) represents a generator of
H2n-2 (V2:IR zn) it follows by injectivity of the map p,

that (p-f) *(lszn-zl) represents a generator of

2n
Bon-2{GR ).
So suppose a = (p-f) 1,‘([82!"'2]) and B represent
o~ 2n . n-1
generators of HZn-Z (GZIIR ), and :LHI*([I:P ]) =aa + bB .
If we can show b = z1 we are done for then we conclude

*2)) ana g, ([e2"70))

that the classes of (p-f)*([s
also generate 82n_2 (EZJR 2n) .

Recalling from Section I that all three of the
questions about great sphere fibrations have been completely
answered for great circle fibrations of s3 we gain
nothing by including the case n = 2 and assume henceforth
that n > 2 . This implies 2n-2 > 2 and

(p-£)*(e(B)) € nz(sz"'z) = 0 hence

<a,0(8)" L5 = <18%772), (p-£)*(e(8))™ 1> = 0
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where < , > denote the evaluation of a cochain on a

chain. Therefore éi.nce e(B) n-1 represents a generator

of Hzn-z('é'zl! Zn) we must have <c1a+c2B,e(B)n-l> =c, -

1n,e®m™ s

1l

So it remains to show that iy (tep”
*

= 21 ., To get this we note that the map ile cp””

2n is covered by a map of total spaces,

~F
-_> GZJR
%13 SZn-l -_— V2:IR 2n such that the pair ('{H ,iHl) :
1
Hl -—> B is a bundle map. Hence inl* (e(B)) = e(Hl) is

the Euler class of the Hopf bundle. From the Gysin sequence

of the Hopf bundle, e(Hl) generates the cohomology algebra

H*(an—l) -~ z[e(Hl) 1/ (e (Hl)n] , and hence, for appropriate

-1
]

choice of orientation we may assume 1 = <[ep"” ,e(Hl) n-l>

= <y (1271 e ™. QED.
*

Our plan to compute the homology class of
2n . .
ir*([!dr]) € Hzn_z (Ezm ) with respect to the basis of
Lemma 3.2 is to compute intersection products. Since
dim '521! 2n 2(2n-2) = 0(mod 4) there is a symmetric,

bilinear form

q: H, (&R 2n) H, (R n 5z,

Poincare dual to cup products in cohomology, gotten by

.......
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computing intersection products of representative cycles
([DO), Chap 8, Sect 13). In the next series of lemmas we

compute the matrix for q, with respect to our basis for

l'1‘4.‘11-2 (Ezm 2n) *

2) is a smoothly embedded submanifold

and it has self-intersection number +2 in '&'212 2n .

2n 2n

PROOF: Recall that p : V,R™ —> ‘E;'zm , and

LEMMA 3.3. p-£(s2"”

P= span(el,ez).

That p+f is 1-1 onto its image is clear, that it is
a smooth embedding will be evident from the computation of
the self-intersection number.

Our goal is to deform the image of Szn.2 off of
itself to a new position and show that the two images

intersect each other transversally in precisely two points

with the same orientation at each.

............
............
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Define g : [0O,m] X Szn-2 -_ E'zmzn

ge(xl, .e "x2n-1)

= p((cosf,-8inp,0,...,0), (xlsine,xlcose,xz, .o "x2n-1) ).

We have
go(l,O,...,O) = gvz(l,o,...,O) =P
90(-1:0:"°:°) = gﬂ/2(-l’o’...’o) = Pop

2n

and since go(szn-z) = all 2-planes in IR containing

2n-2 2n

the vector e, and gvz(s ) = all 2-planes in R

containing the vector e2 , P and Pop are the only

2n-2 2n-2

possible points where go(s ) intersects g TVZ(S

]




...................
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Since 9 and g - are both injective there are

exactly two points xp = (1,0,...,0) and yp = (-1,0,...,0)
_ o2n=2 . _
s with go(xp) = gﬂ/z(xp) = P and

9o lyy) = 9. /pv) =P .

Now we show that the intersections at these two
points are transverse and that the direct sum orientations
at both points are consistent with our original choice of

2n

orientation on E‘zn .

We digress to examine the coordinate chart

2(2n-2)
H U — m .
® b =
a
-1 1,2 )
) .
%2n-1,2

is the 2-plane Q which is the graph of this matrix viewed
¢
as a map from P with basis (el,ez) to P' with basis

(e3,e4,...,e2n). So we see that

(*)

QB .p&n((l,o,ll,l,az’l, oo o,azn_l’l))(o’l’al’z’az’z’ .. .’azn_l,z)).
. 2n-2 1
Now we “ake Ty 8 “"1""”‘2::-1)6 s x, > 2]
- m2n-2 ,

I NP W Wi W WP 3 S o

BRI | VRNt
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X, X X
Ty (Ryseenx, 1) = (2,2, 200
1% 1

as a coordinate chart in a neighborhood of xp = (1,0,...,0)

€ Szn-2 « Since

go(xl’ oo .,xzn-l) = p( (l’o, . .,0), (o’xl’xz, oo .,in_l))

X X
= Bpan((l,o,...,O),(o,l,x geeey x ))
: 1l 1

if x, # 0 from (*) we conclude

0 yl
-1 ' 0 v,
@ gpe Ty (¥9s¥pseees¥yp o) = |,
9 Yon-2)
likewise we get

P -
Yy 0
-1 Yy 0
wgn. Tl (Yl’ o 0’y2n_2) = . .
2 . .
Lyzn-z OJ

The map ¢ works perfectly well in a neighborhood of pop

and we have defined exactly as on the

T_l Tl
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corresponding neighborhood of yp = (-1,0,...,0) € SZn-z

2 s
o alle

hence we get the identical result computing in a neighbor-
hood of Yp . We conclude immediately that the

intersections at P and Pop are transverse, since if

b T,R 2n=2  4enotes the tangent space to m2n-2 at the

origin we have

2n 2n

-2)= T l!2(21'1—2) .

-2 -1
)® d(ep-gowi )O(Tom o

: -1
L alerg sy )o(ToR
) . 3

X Its also clear that whatever orientation is chosen for

m2n-2 the direct sum of the two induced orientations in

i m2(2n-2) will be consistent with the standard orientation

on RZ(Zn-Z) . So if we fix an orientation of Szn-2 ’
3 since 2n-2 is even, the orientations induced on RZn-Z

and will be opposite but this fact allows us

" bY Tl T_l
’ . . : 2 (2n-2)
) o conclude that the direct sum orientations in R
”
3 computed using r, or «r_, will agree.
d
,J So based on our choice of orientation for zzmz" »
: we can say that the intersection number at P is +1 . It
remains to show that the orientation on tJP such that
! 2(2n-2) P
. Qs UP -—> R : is orientation preserving is

op

2n

consistent with the global orientation of E'ZIR , for

........
..........
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then the intersection number at Pop will also be +1 .

SUBLEMMA 3.4. ka“‘ , k < m, is orientable if and only if
m is even.

m .
PROOF: Let Q = span(el,ez,...,ek) € G R and define

p ¢ [0,m]x r" _ R™ with p. € SO(m) for all o

e

pe(el) = cosbe, - sineem

1

°e(em) = sineel + c:oseem
pe(ei) -ei, l<cigm

o~ m o~ m N
Po induces a map GkIR —_> GkIR which we also
denote by P, . Note that pﬂ(Q) = Qop = A(Q).

k (m-k)

e

Let % : Ug —> R

coordinate chart centered at Q , where

~ Hom(Q,Q') be the usual

UQ- (R: RQ'= {0}). Since P sends e to -e,

and L to -e. viewing a k-plane R ¢ tJQ as the graph
of a linear transformation from the basis (el,...,ek) to
the basis (ek+1,...,em), P changes tﬁe sign on a vector

in the domain (el) and a vector in the range (em) .

Therefore we conclude
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P -
all o e o0 alk
EOA. p“o$-1 ( E E )=
N n_k, 1 LI B I ) an-k’k.
P- - o .
all alz LI N BK ] alk J
%21 : :
“®n-k-1,1 ®n-k-1,2 *°°° Fhk-1,k #
| ®nk,1  "*nk,2 77" Tnek,k | ;

So the total number of minus signs introduced is

(m=k-1) + (k-1) = m - 2 which is even if and only if m

is even. p“ is homotopic to the identity so it is always
orientation preserving, therefore A is orientation
presefving if and only if m is even. But Gknm is just
the quotient space of ﬁn“‘ under the action of A , hence
G'.k:IRlll is orientable if and only if A is orientation

preserving. | QED SUBLEMMA

As we see in the last paragraph of the proof of the

sublemma, G Rzn orientable implies the two orientations

2
on neighborhoods of P and Pop which are each consistent
with a fixed orientation on nz(Zn-Z) under the map o,

......................................
.............................................
............................
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are consistent with a global orientation of 3’21!! 20 mis

completes the proof of LEMMA 3.3.

DEFINITION 3.5. For Q eﬁ'zmzn , the Bad cone of Q
= {R € Ezmzn: Vv ERQ where 0 £ v € mzn} = the set of
all oriented 2-planes in ]Rzn which meet Q in at least

a line.

REMARK 3.6. Note that p-f(szn_z) c Bad cone of P .

2n
LEMMA 3.7. The map iF s MF > Gzl! is a smooth

embedding and ir(%) meets the bad cone of Q , B,
transversally, for each Q € xr(%) .

PROOF: ([G-W-Y], Theorem 4.1)

In particular, if F is the Hopf fibration Hl
then with the above remark we conclude

p.f(szn-z) m iH (I:Pn-l) . Therefore if -+ denotes the
1

2n-2 1l

1)-inl*(tm>“‘ 1

intersection product, we have (p-£f)_([S

= %1 .

£(s™*
% )
op
i.i“' (cr™ 7 .
7,80
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Now define [cpn'l] 8o that <[EPn-1],e(Hl)n-l> = +1 and

[szn-zl so that (p-£f)_( [Szn_2 1) iy
.. 1,

In all that follows we assume (a,b) € Z + Z denotes that

(tee™ 1)) = 41 .

element of H, (E' ®2 with representative

a(p-£), (82~ 21) + big ([cr"'ln.
1*
It remains to compute iH1 (rep™” ]) "H ([an_]'])

to complete the matrix representat;on of q, -

LEMMA 3.8. 1 (an-l) has self-intersection number 0 if

H
1
n iseven, 1 if n isodd (i ([e" 1yy. g ([cp“ 1)
t

= n mod 2).

~

PROOF: When n = 2 , 4 - Szx S2 and :LH (cPl) appears
2 1
as szx[pt] -Te) J‘H (EPl) clearly has self-intersection

number 0 [G-W]. This deformation process can be mimicked

for G 21114;k to conclude chk-l can be deformed completely

2

off of itself.

E Let

! cosg O -ging O

: 0 cos § 0 sing

T(6) = sine O cosfp O € so(4)

0 -ging 0 cos @

1) Assume n=2m . Let 8S(8) be the 2n x 2n

4 8-%.8 AN FERE . ) 4

matrix

S W A

\

“

]
'y
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S ;
RS DX

.
)
LR L WY Y

T(6) o

sS(9) = T(8) . (m copies of T(6) on the

.'.l' (8) diagonal) .

sy
.’
Latal -

N We apply S(6) to the complex lines in m2n then since

S(w/2) is homotopic to §(0) = I,, Ve view it as giving

- a smooth deformation of i @) inside '(';'ZJR n
e 1

X3 The claim is that §S(r/2) takes complex lines to
% complex lines, however, with the opposite orientation. Let
= P, be the complex line containing the vector

bS X = (xl-l-iyl,x +iy2 9 ..,xn-o-iyn) « Clearly we need only

2
examine the effect of T(w2) on ¥ = (xl,yl,xz,yz) .

= e
AN

PR
| =

-t

[x,] [-x

T(1/2) -

RIS IR
N

T(V2) (i¥) = T(1/2) - =-i = -iT(v/2) (R)

Y
.

5
"
«
‘.
-
s
-

0

- Hence
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) .
Anbannt 4 ee,

-~ ‘nr
» :.n .. AL

X xl -xz

T(w2) ((a+bi) [ |} =(a-bi)T(w/2) | | =(a-bi) |
2 2 1

¥2 Y2 Y

So S(w2) (Px) SA(Px,) where

Xt (XY s Xy amYys e e o™Xy Yo Xy 157Y, ) a4
S (7/2) (i @™ 1)) = A @™ ). since
1 1

iﬂ (CPn-l)n A-in (P ) = P , the case n even is
1 1

complete.

30

(3.8.1)

Before we treat the case n odd we pause to define

2n

an alternate complex structure on R . If J denotes

2n

our original complex structure on R given in the

NOTATION AND CONVENTIONS (1), then our new structure,

denoted J_ , may loosely be described as J, = J| p

Rigorously, we define

Jp(el) = J(el) =e,

-J .

p.L

usual complex structure on P

Jp(ez) = J(ez) = -e,

J (e ) = =J(e,. ) = -e_.
P 2j-1 2j-1 2) ) for 2 £3<n,
- - - *opposite” complex
Jp(QZj) J(er) e2:j-l structure on P?¢
n
Now let G 3 81 - szn 1 -G—> M_ denote the great

G




2n-1

circle fibration of S determined by the complex
Btmcture Jp . “G(zl’ 22, oo .,zn) = ﬂG(wl,wz’ oo .,Wn) 1f
and only if there exists 1\ € Sl‘g ¢ with z, = W, and
z;, = iwi s 2L 1 n . The equivalence classes in szn-l
under the projection Te are denoted by curly brackets,
-1 -

(zl.zz.....zn] = g '"G(zl’zz""’zn)' Clearly M, is
diffeomorphic to €™} (if r : R n G,R n e

the map that sends a 2-plane Q to the reflection of Q

in the e,-axis then its easy to see that

1l
n-1 .
CLAIM. iG(Mb)n iH (an-l) = {P}] and the intersection is
1
transverse.
PROOF: Let *H‘ VP -_> RZn-z be the usual coordinate
chart about P = [1:0:...:0] € €™ 1,
n-1

QH([zl.zz.....zn]) = (22/21,23/21,...,zﬂ/zl) € . Let
¥ ¢! Wp -_— Rzn—z be the usual coordinate chart about

P= {1:0:,..20} € M, 'G([zlzzzz...:zn]) =

-(22/;1,23/51,...,zn/;l) € mn;l . We have
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. -1 . .
7 . . Q‘lnl‘ 'H (xl’yl,...’xn-l’yn-l) = : : (3.8.2)
‘ x -Y

-1
P iG. 'G (xlo Y1: see ’xn-l’ Yn_l) =

Y .

e

‘, - -
53 , . |"n-1 n-1

Its easy now to verify that the intersection at P is

i transverse and that in Up , P is the only point where
i i (@™ ) intersects i (M). If R € i (u:p“"l)n
G G H].

l;: n(&‘zn 2n-Up) then R g P' so clearly R £ iG(MG) .

o

o We comment that in fact i (M) and i_ (2p"° %)
G G Hy

are orthogonal totally geodesic submanifolds of ‘c‘,'zm 2n .

2) Now suppose n =2m+ 1 . Our goal is to deform

n-1
ial(l:P ) ¢to iG(MG).

Let
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(m copies of

- T(8) on
5(9) T(6) ) o diagonal)

s

T(8)

3 |
N d

From equation (3.8.1) it follows that

S(w2) ([wlzwzz cse :wn])=[w1=-v-v3:v?2:. .o :-v-vn:v-vn_l}. (3.8.3)

Hence, as a mapping of 'Ele 2n to itself,

. n-1
S(TVZ)(lal(EP )) = iG(MG)-

o In local coordinates on an-l » from (3.8.3), we get

=1 .
_‘f:: i ”°S(V2)‘inl' .H (xl’yl’oo.,xn-l’yn-l) = . : (3.8.4)

& L'Yn-l -xn-y

. From the claim we know the intersection with
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{ )
‘:5 i (EPn-l) is transverse at P (x x ) =
: H,. s Xpa¥yreccs¥n10¥ng) =
X = (0,...,0), so it remains to compute the oriented inter- &
- section number. We compute the differential of (3.8.2) and
R \
< (3.8.4) at 0. It is sufficient to examine the case n = 3 . ;
% 1 0 0 0 {
g; 0 1 0 0 ;
- 0 o 1 0
- . _ 0 0 0 1l
N d“"'lnl’*n do=1lo -1 0o of *
t 1l 0 0 0
2 0 0O 0 -1
- | 0 01 0
| [0 0 -1 0]
4; 1 0 0O 0
] . -1 0 -1 0 0
. " . Y t—§ .
~ d(e-5(w/2) R o o o 01
0 0 1 O
- 0o -1 0 0
= -1 (o} 0 O
- b -
If we juxtapose these two matricies and calculate the
:: - determinate of the resulting 8x8 matrix we get a positive
E@ number. Hence the direct sum of the orientations under
M these two embeddings is consistent with our original choice
: of orientation on E&IRzn . So for n odd
i, ([ i (e =41 QED.
f 1* 1*

We now have sufficient information to compute the
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matrix of the bilinear form qn s

.. q =

(P'f)*([szn-zl) -(p- f)*([SZn-Z]) i ([EPn-l]) . (p.f)*([szn—zl)

Hl*
(-0, (1s2" 72D i (o™ i (e n i (el
l* l* l*
1l nmod 2
Let i, : et _— '(‘,'ZIR 2% pe the following embedding:
2
1) if n is odd, i = Aei
? H2 Hl ?
2) if n is even, :i.Hz = iG-i (where .
iz d:Pn-l -_> MG is a diffeomorphism) .
- t!"“(cr‘ )
0
fOf(S’" )
S Lc(ﬂ”ll..’
'Gzlizn (n even) 'Ezl!zn (n odd)

',

Yo
L]

.l‘;_ ."‘_ [ ACA ':':‘:i

e
A

............
..........
s ot

.......
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n-ll

Let {€P denote the fundamental cycle in

H, ,@" ) such that i_ ({&e")).(p-£),(18%" %)= 41 .
24
(note that P € i (CI:Pn 1) if n is even, P €i
H2 op H2

(ep™ 1)

if n is odd)

n-1

Now we compute the homology class of i ({ep 7)).

B
n-1
Suppose in ({er” 7)) = (a,b).
*
1) If n is odd then since iH ({an-I])-iH ([EPn-l])
2* <%*
= 0 we have

(a3 (131 =0

so a+b=0. also i ((€e" 1)) (p-£), (8?2
24

= +1 gives:

(a b2 11031 = +1

gso 2a+ b=1 ., These two equations together

imply ip ((ee™ 1y = (1,-1).
*

2) 1f n is even, then an argument similar to that

at the end of LEMMA 3.8 shows that

iy ([cp"'lj)-iH ({@p™ 1)) = +1 . Therefore
1 2
* *

(a b)[i ;][gl = 41




|
]
\
b |
]
f:- 37 ‘
b~ l
:; s0 a=1. As in the odd case, we also get
T 4
N 22+ b=1, so for n even we conclude
S . n-1
-3 i ({eP 1) = (1,-1).
i . 2, ]
f;f We have finally assembled enough information to :
- complete the first step of the program we set out at the i
ég beginning of the section, namely to show 5
- i (n*(gp)) = iy (H*(mPn-l)) for 3 either 1 or 2. We ]
x w j* |
i may and shall assume, without loss of generality, that ]
:3 P € IF(MF)' By LEMMA 3.7, IF(MF) is transverse to
4 p-f(szn-z), so let [gF] denote the fundamental cycle in
.f H2n-2(MF) determined by the orientation such that
2n-2 .
g ip ((Mp1)(p-£) (1S77]) = 41 .
-
WA
,:.:
» There are now two possibilities, either
5 <igp ([»&.]),e(n)"'% =+l or -1.
3 *
; If we let ([M.]) = (a,b) then
: e, (1M ’
;: D= <:lF ([qF]),e(B)n-l> =+1 or -1.
7% *
%
0
A
¥
b

L &
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(
N l) Suppose n is even.
o
:1§ . If b =+1, then
X
.“‘ 2 1 1
N (@ 1) ollg) =+1
\_:(f
'.‘5_'.:
~ implies a=0. If b= -1, then
Ny 2 11, 2
2
L implies a=1.
R P
ha!
" 2) When n is odd, similar computations with
o5 q = [i i’] gives the identical result.
) . n-1
Therefore in all cases, iF* (H2n-2 (l&,)) = 1Hj* (Hzn_z(m’ ))
for j either 1 or 2 and the particular value of 3j is
:;3 completely given by the sign of <:'LF ([MF]) ,e(B) n-1>.
*
In the lower dimensional cases we turn to the Gysin
--1 . sequences of the Stiefel bundle B , and the fibration F .
-]
s - Since the embedding iF= 2&, -_— %'zmz is covered by a
~ bundle map of total spaces, by functoriality of the Gysin
T
" sequences we have the commutative diagram:
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- HJ (Vszn) - Hj-l (‘c';'zm Zn) Ue (B)> Hj+l “5213 Zn) - Hj+l (vzn 2n) -

Vg l/jr* lig" Vg

2n-1 Ue (F) S Hj+1(MF) S

*®

Hj+1(82n-1)_>

- Bi(s )—> Hj'lug,)

Now H*(MF) - z[e(P)L/(e(F)n) hence for j < 2n-2 we have

n-1

)). Thus the

zeros on the right and left sides hence we obtain
n-1 .
(Hj (€ 7)) =i,

by, (B M) = 4y ..

compilation of homology data portion of our proof has been

(Hj(EP

completed and we now show that this information is sufficient

to construct the desired homotopy g .

To be specific, for the remainder of the proof we

assume iF ([MF]) = (0,1). So our goal is to construct a
*

homotopy g : I x ep”! —_> 'G'Z:R 27 Lith g = iy and
1
n-1 . .
g, = F'hP where hP: cP _— MF is a homotopy equiva-
lence. From now on we drop the subscript 1 from the fibration

nl and let H denote the standard Hopf fibration.

The homotopy equivalence hF can be constructed very
explicitly by first constructing a map h: g2n-1 - g2n-1
sending Hopf fibres to fibres of the fibration F . hF may
be constructed so that it preserves the orientations on the

fibres of the two fibrations or reverses them. Hence we

e ol RSP PN E MO TRy

...............................




3 » s T a T AT 4Ty VEY Y et il st B ShenJihes dhass it ol g - — i 2
LA NS T T T AT T W T e ML s S i IR M 2 Bt A S S S S i A T S Sl Al i O

______________________
................

A
; 40
; *
;,‘ may and shall assume that hF (e(F)) = e(H). This implies
~ . 1) 1f£ 82 = tI:P1 [ d:Pn-l represents a generator
i n-1 L2 . 2
N - of nz(cp ) then J.H*(S ) = (1F-%)*(S )
&
L (since n:pl is dual to e(H)).
o . n~1l.. _ . n-1
: 2) i, ([€2771) = (iprhg), ([er"71).
.3;, Our plan is to construct the homotopy g , in a step-
wise manner over mPl < EPz CeeC mPn-l » using the homology
= data to conclude that any possible obstructions to this
procedure vanish.
NOTATION AND CONVENTIONS.

- 2k+1
S 2k-1 ) 2 _
5 1) I xS = {(X),000,%5 .4)¢ Ei=2 x“=1,0<x <1}
® 2+l

— ° « =
Up = {(Xpseeesdpyy)t &5 %7 <1, % =0]
) 2k+l
Sl Uy = {00 eeesXqy)® Dinp % <1, %) = 1)
% 2) 3% = U U(T x sZ1)y u, ~ sk
::':.‘
N 2k+1
- 2k+1 = -« 2
. 3) B =IxU,= {(xl,...,x2k+1): iap X3 K 1,
: 0<x <1]
- 2k
k 2 k-1
. 4) TP = “xl"“’x2k) : 21-1 X" < I]U"k-l TP (where




..........................

i
41 'j:‘
»
m_1? Szk-l -_> k-1 is the Hopf projection). fﬁ
¥
- —
. 5) £%: 8% —5 (0 x eP)uz x e Hu x e2¥) s )
given by .i
2k 2k (%19 (Xys e e esXppyn)) X €Uy ox U
£ 0= £ 0,00 X010 Yix (Xpene,X, 1))
17 Tk-1""27 """ 2k+1
: x €1 x s¥L
L 6) £, pZHl o o opk
(%19 (XgsXgs e eesXopyy)) okl
2k+1 2k+1 X €Int B
£ (x)= f (x ,ooo,x )=
1 2k+1 2k .
£ (xl,...,x2k+1)
2k+1

X € 0B

These rather cumbersome looking definitions can best be

summed up by the following picture for k =1 :

(O
TS
N m

f2

Uy — — (oxepl) y (xxee®) y (1xeel)

...........

I S TR S
PP PRV U T TR TS W I R W)




*, 42

B2k+1

LEMMA 3.10. If —> X is any map with

51287 = §.£%* where

x F: (0 xeru x 2" Hu x e8) —> x , then there :

exists g : I x u:Pk —> X such that § = g.£2k+l .

wﬂ J TR P

o ':' g .1 .

k

2k+1 L X CP
£ . g

PROOF: Define

) 3(t,x) if x € "= @p* !
g(t,x) = -
F(t,x) if x €C k-1

N

CYREA
»
ol

QED.

From the homotopy sequence of the Stiefel bundle B ,

<. we get the exact sequence:

1 pe e
WO

2n

[y
12,22

1l ~ _ 2N 1
ﬂj (87)=—> nj(Vzl! ) —> 'nj(GZR ) —> nj_l(s ).

¥ ‘ Joos oo
LI E PRI |

So from our assumption n > 2 , we conclude from the

homotopy information of sl- and V2R 2n that:

] 2n - ~ 2N
- m @R =0, @R

e
N R R

) ~=xz, ﬂj(a'zmz) = 0 for all

other j ¢ 2n-2 . So by the Hurewicz Isomoxphism Theorem,

PR

PSS

.
s
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o (‘5 ]Rzn) = H ('é' mzn) and since i (cP]') is homologous
A 2 2 2 2 H
;- to iF.hF(l:Pl) there exists a homotopy
- 1 1 e _2n . A | 1
¥ g7: I x@ —>G,R" with g,'= 1H|a:p and g, = 1F.hP|a:p .
%
’ Define
i
7 % (0 x epP)ucz x eehua x ep?) — TR A"
) .
3 3°00,%) = ig(x)
X
2 1
j (t,x) = g, (x)

2(1,%) = 1 n (x).

r
%)

Define

- 4 .
§218* = s2.e% 8t — ‘c‘s’zmzn .

L300 GG LY

If n >3 then n4(é'2:l!2n) = 0 and :;'2[84 extends to a

map go: B> —> T,R 2" nere g2|eB° = g2[s* = 3%.£% .

o
lefaTeli .l

By LEMMA 3.10, 62 = gzof5 where gzs I x I:Pz -_— ‘a’zmz“ .

Since 92](0 x €p%) = jzl(o X cpz) - in|tP2 and

L BN

11 xeph) = 32| (1 x ) = L .n jep? , g is the 4

desired extension of the homotopy g1 .

Pt oCats - §
PPN A N

®z
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If 2 <m < 2n-2 then nm(a'zm 2n) = 0 80 its clear
we can continue this stepwise extension process without

obstruction up to a homotopy

Trying to continue we construct

71, 0 x e Hua x 2™ Hu (1 x eV —> ‘&'2132"

as above, which leads to a map En-llszn-zz Szn-2—> 'Ezmzn

=-n=1; _.2n-2 n=1 _2n-2 -n—l 2n-=-2
g |8 =3j

- f . |8 represents an element

of = (v IRzn) = % and if this is the zero element then

2n-2
we can proceed exactly as in the first stage, extending to

an-lg an-l — %’23 2n with ;n-l - gn 1.f2n -1 by LEMMA
3.10. But gn-l is a map from I x I:Pn—l to ?;'znzn

. n=-1 n-1 n-1 n-1 .
with g “|(0 xEP ) = i, and g |1 x ep” T)= i .hy
so setting g = gn-l gives the desired homotopy and

completes the proof of THEOREM A.

Hence it remains to prove

LEMMA 3.11. ;n-1|82n-2 represents the 0 element of
2n

"2n- 2(3":IR

PROOF: We write g for the map g 2|82““2 . Let

C I S St i S TR ) S e - LT T . . . - . . « . - - .
#‘\ .'1.. . .‘-._'.."-. e T AN N T T T T e e T T T T Lo T e .
p " . - ) o
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2n-~1 2

Vo = {(xl,...,xzn_l): oo X5 = 1, X, >0, 0 < % < 1}
2n-~-1 2

2n~-2 - =

8 = UOU VOU Vlu Ul

Let j,: t'Ji —> ™1 bpe the

identification EPn-l = U,U ¢Pn-2
i ﬂn_z

for i = 0,1 . Orient the cell ﬁo

so that j0 is orientation

preserving (recall the original orientation on an-l to

n-1

define the fundamental cycle [EP ]) . Now orient the

remaining cells Vb ’ Vi R 51 such that the induced

orientations on the boundaries cancel and we get a

2n-2., = -
]l = Ub + Vb + V1 + Ui . Therefore

on the chain level, g#(82n-2) = g#(ﬁb)+ g#(Vb)+ q#(V1)+ q#(ﬁl)-

Now g(vi), i=0,1, factors through I x EPn-z which is

fundamental cycle, [8

2n-3 dimensional, hence considered as 2n-2 singular chains
they are homologous to 0. So, if < > denotes the homology
2n-2 - = -
class of a chain, g,([8 ])-<g(Ub)+g(U1)>=<iH-j°(Uo)+
= n-1 n-1
+ipehped) (B))> = 4, (I8P 1)+ i B (=[EP"1)=(0,1)=(0,1)= 0

(note that the orientation on U, is opposite to that on

1

ﬁo) .
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{»
For n > 3 we have the commtative diagram:
: (exact homotopy sequence of Stiefel bundle)
~ 1 2n, = 2n 1
; =>0= Mg (8) =D My H (RTDN=> my @GR >y, 5 (87)=0
. oy VPg
.::' 2n 2n Ps ~ _ 2n
> =0=Hy @GR, LR => By, @R
(exact homology Gysin sequence of Stiéfel bundle)
Where Py and pG are Hurew?.cz homomorphisms and py 1is
' an ismorphism. From exactness of the bottom row, P, is a
~ .
1 monomorphism, hence by commutativity we conclude pG is a
N monomorphism. But pG(<g>) = g*([82n-2]) = 0 hence
w _ ~ 2N
N
-»
?
3
y
<4

PR LA
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?i» SECTION IV

.\; . Every great circle fibration of s3 has some orthogonal

4 ] pair of fibres ([G-W], Theorem C). The proof of this fact,

‘_; ’ along with other results in [G-W] show that it is equiva-

:-: lent to fhe Borsak-Ulam Theorem for maps of 82 to :IR2 .

- Since the Borsuk-Ulam Theorem is valid for all dimensions,

:;§ it seems natural to conjecture that the same result holds

%: for great 3-sphere fibrations of S7 and great 7-sphere

i3 fibrations of S]'5 . In this section we demonstrate that

- this is not the case by providing an explicit example of a
great 3-sphere fibration of 57 with no orthogonal pairs

‘« of fibres. A completely analogous approach provides an

f example of a great 7-sphere fibration of Sl5 with no

\ orthogonal pairs of fibres.

‘ NOTATION AND CONVENTIONS.

~ 1) [el,...,eB} is the standard orthonormal basis

‘ ' for R 8 .

»

£ 2) P, will be the 4-plane, P, = span(el,ez,ea,e4).

. 3) P_ will be the 4-plane,

. P = 'Pm(es,ee,e.,,‘za e+ ‘% eg) .

4) We identify the quaternions H with

f 47
: |
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4 f
R in the usual way, . A
a=a +ai+aj+ a4k -_> (al,az,as,a4).
5) We also identify H with a 4-dimensional ;
linear subspace of GL(4,R)U{0}, via the &
"left multiplication map": .
[a, -a_ -a. -a] 5
a, -a, -a, -a, :
_ a, a, -a, a ‘f
. . 2 1 4 3 5
a=a1+a21+a33+a4k —> L, = + & a -a -
3 4 1 2 o
a, -a, a, a :
|4 3 2 1 &

This map gives an algebra isomorphism of H
onto its image.
. . 3 7 4
6) We view the Hopf fibration 8 —> 8§ —> §
as the "graphs" of the left multiplication map

given in (5). Specifically, the Hopf fibres are

Y Yty

given by the family of 4-planes .

Qa-{(w,aw): w €H)] forall a e H

4 ~
0 L ]

along with the 4-plane Q_=0Q

Prom this, and the matrix L , we get

(where a = a +ai+33j+a4k)

1 2
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Qa = span(el + ale5 + ase. + a3e7 + aeq

2 T 385 T 3,8, + 3, - ase,,

3 - a3e5 - a4e6 + ale7 + azee ’

e4 - a4e5 + a3e6 - a2e7 + alee).

We begin by exhibiting a fibration of s7 by great

3-spheres with precisely one pair of orthogonal fibres.
Naturally the next step would be to try to perturb this
fibration in a neighborhood of one member of the orthogonal
pair hoping that this perturbation introduces no new orthogo-
nal pairs. We show that the orthogonal pair in this fibration
is the only pair of fibres that satisfies a weaker necessary
condition for orthogonality. This allows us to conclude

that if we are judicious in choosing the perturbation we

can guarantee we introduce no new orthogonal pairs while

still destroying the orthogonality of the original pair.

Let T € GL(8,R) be the linear transformation given
by:

T(ei)"ei l1ig7, 'r(ee) -Aéz-e4+°22e8.

If we apply T to the 4-~planes of the Hopf fibration we

AR R A S S R I .
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get:
T(Q_ )= P_= span(e +’Eae + a,e_ + a,e +ae+3ae
a a 1 2 474 15 2 6 37 2 48°
_a2 i} _ a2
e, 2 338, ~ 3,85 + aje. + ae, 2 2385
W2 _ . W2
e, + ‘- ae, - ae, ~ae +ae, + 5 aeq
o2 - _ 2
e, + 5 a,e, ae; + ae. ae, + % alee)
= span(fl(a),fz(a),f3(a),f4(a)) where
£.: 124 -_— :ll?.8 is the ith spanning vector of

i
Pa shown here, 1 < i £ 4 .

T(QG) = P“ .

So the family of 4-planes {Pas a € HU{=»]}] gives us a

new great 3-sphere fibration of s7 equivalent to the Hopf

fibration.
4 8 8 8 8
Let F = (fl,fz,f3,f4): R -—>R XR xR xR .
Note that
P, = span F(1,0,0,0)= span(e.+ e_,e.+ e_,e.+ e (1+‘ée+
1 P2 1" 5272 "6’ 3 7? 2 4

o2
2 °g
P_,= span F(-1,0,0,0)= span(el- eg,e,~ eg,8,- e.’,(l- 2 ©4”

ok

g

. -.\.:...-‘.,:/~'l._-‘..:'7.-'.{.(';...;.-.;1- o« -1;‘-«:.4.-4‘.‘.-. e T S W T et et - _: IR _..._ B ‘.‘-_. - - N
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Chacking pairwise dot products between spanning vectors for

Pl and P_ we see that P_ =P -

1l 1 -1 °

We will show that (Pl,P_l) are the only orthogonal
pair of fibres in this fibration by showing that in fact a

weaker orthogonality property holds only for the fibres Pl

and P-l among all f£ibres lying over H (excluding Pa).
For a € ‘.lil let Ra denote the 3-plane in JRB ’

i

Ra = spah(fz(a),f3(a),f4(a)) cP_ . R is a S5-plane

a a

which may or may not contain a fibre of the fibration
(checking codimensions it can clearly contain at most one

fibre).

LEMMA 4.1. Ra‘" contains a fibre of the fibration, Py »

if and only if a = z1 (in which case b = ;1) .

PROOF: R * o P
a = Db

spanning Ra is orthogonal to all four spanning vectors of

if and only if each of the 3 vectors

Pb . Therefore we compute:

0= fz(a)-fl(b) = -azbl + albz + a4'b3 - a3b4

O= fz(a)'fz(b) =1+ a2b2 + albl + a4b4 + a3b3

0= £,(a)'fy(b) = a,b, - a)b, + asb, - asb,

¢ = - - - E
Om= fz(a) f4(b) azb4 + alba a4b2 a3b1 2 a3




JSS
o AR
'y Sy 3 el alals

o

DA

LA S VN

. LAY »
SONIRG Tt

g
P ™ o e I T P AU P

.......

52

. i
0= £4(a) :E4(b) = a4'b4 + a3b3 + a2b2 + > al'bl +

o2 o2
+ (1+ %55 a)) (1+ £ b))

- o2
a4b4 + a3b3 + azb + (2 +al)b1 +

+ (1+

o2
2 1)
This system of 12 equations is equivalent to the matrix
equation:

- - T ok <k ] = Aé m
aaaablb2b3b4 0102a3

a b, b, -b, b =OO-1-‘2Ea2

Ta; T3 3 Ez 2 1 7% P3 2
2
L—a4 a3 a2 2 +a l:b3 b4 bl -b2 0 0 O =(1+ 2 all
b, -b. b. b
. ) L‘t 3 2 1 v _
-y A —~—
A B c

Suppose a-a1+a21+a3j+a4k and b-b1+bzi+b3j

+ b4k are a pair of quaternions whose entries satisfy the

above system. If a'b=c +ci+c3j+c

1 2 k then its easy

4
to check that:

row 1 of A°col 1 0of B = c2

row 2 of A°col 2 0of B =2C

1




P
.'." ;

1z

& 53

{

5:;,‘ row 1 of Accol 3 of B = -C,

S

23 : row 2 of A-+col 1 of B-Cs"

J N )

So comparing with the entries in C we conclude that

_ Also we have

2 0 =xow 3 of A-col 1 of B-c4+2b4-2b4 hence b4-=0
v = L] E _ﬁ

{ 0 =xow 3 of A°col 2 0f B = Cy 2 b3- 2 b3 hence b3- 0
%% — -

- . - of2 of2

) 0 =rxow 3 of A°col 3 of B c2+2b2-2b2 hence b2=0
r Therefore b ¢ R 80 a.b = -1 implies a € R , a = a, ,

= D= bl . Finally, -(1+ 122. al)- row 3 of A°col 4 of B =
-,

L2 L2 2 o2
c(2+a1)b1 so -1 zalszbl-i-albl:zbll

¥ Z, .2 . )
':_:: hence 2 8 =5 bl and a, 'bl . = bl and

N albl = =1 together yield a = %1 and b = 1. QED.
: ] COROLLARY 4.2. The only orthogonal pair of fibres in this
f

s fibration are Pl and P-l .

ya PROOF: We've already shown P, and P_, are an orthogonal
" pair. P is not a member of an orthogonal pair since

» 1 i I

< e, €PN Po but P $r Po . This implies P _ is not a
! ~ f£ibre.

......................
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If PaL =P for a , b € H, then clearly
Ra"‘ 2 li'a"L = Pb . By the LEMMA this is only possible for
as= *1. QED.

Now we proceed to perturb this fibration in a neigh-

borhood of the fibre P We perturb it in such a way that

1 [ ]
the new fibre over 1, Pl' is no longer orthogonal to P-l ’
and so that we can still use LEMMA 4.1 to conclude we have L

introduced no new orthogonal pairs.

Let B, be the closed ball about {1,0,0,0) € r?

where we choose 0 < ¢ < %‘- small enough so that fpr all
pairs a , b € Bc ’ Ra and Rb are not orthogonal. Since
2 ? f3 and £ 4 are continuous we can certainly find such
an ¢ (actually any ¢ < -é]"- will work).

£

REMARK 4.3. Note that fl (p) is pot orthogonal to P_,

for (1,0,0,0) £ p € B‘ . This follows since all vectors
orthogonal to P_, lie in P, by COROLIARY 4.2 (P_,*=P)),

but for p 4, (1,0,0,0), fl(P) £ P, -

S8ince we still want to apply LEMMA 4.1 to our new
£ibration we don't want to perturb the 3 vectors tz(a) ’

£3(a) and 14(a) lying in the plane Pa . We only want to

?
S R R R s Ly S G TRRN DY
! \ N IR .}\(
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move the vector fl(a) .
Define G : :IR4x s3 -_> :IR8
4
G(al, ...,8.4,b1,...,b4) = 2i=1 bifi(a)
2 2 2 2

where b,” + b,” + b," + b, = l. (a,b) —> G(a,b)/|G(a,b)]
is just a parameterization of our great 3-sphere fibration
of S7 over the open set ]R4 o 114 ;H4U{c]. Let
G = G]ch s3 . G is a diffeomorphism from the compact set

B, X s3 onto its image. 5
For any & > 0 , there exists a diffeomorphism

g : :IR4 -_— :R4 that is the identity on the exterior of 1

By/ » aPs  (1,0,0,0) to (1t -:-,0,0,0) for n sufficiently

large so that

agi
sup ‘a_x_ (x) -85 |
i’j4 j
X€IR

is sufficiently small so that the map T B‘x S3 - :Re »
o, 24
G (al,...,a4,b1,...,b4) = blfl.g(a) + i=2 bifi(a)

1l

satisfies I (x) -8 (x)] 1 <8 (where | | p is the ¢C
c c

norm). Now G is an embedding so for sufficiently small

1

C* perturbations it remains an embedding ([HI]), Chap 2,
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Lemma 1.3). Assume g and n are chosen such that G'

is an embedding. Let G' denote the extension of G' to

a map from 1R4x 83 -_— 1!8 by setting G' = G on the

-~

exterior of B‘ /2 ° Since G' is a diffeomorphism from

'.|R4x S3 onto its image we conclude that the new family

of 4-planes

Pa' = span(fl-g(a),fz(a),f3(a),f4(a)), a€eH

along with Po' = PO determine a smooth great 3-sphere

fibration of s7 . Note that for all a € HU{=), a £ B‘/2 ,

P =P ', Forall a € H define
a a

Ra' = span(fz(a),fa(a),f4(a)) (this is just cosmetic since

' =
trivially, R, Ra) .

Finally it remains to observe that this fibration has

no 6rthogona1 pairs of fibres. Suppose l’a"L = Pb' for

some a , bemM (clearly a or b = o is impossible since

PQ' = Pa and Po' = PO). From COROLLARY 4.2, at least one

of a or P must lie in B‘ (in fact B‘/2

8ince l?.c - Rc' for all ¢ € B , from the initial

), say a .

restriction placed on ¢ it follows that a € B ¢ implies
' + . v 4 ' =
b £ B, » hence P'=P . Therefore Ra R'T2PR Py

80 by LEMMA 4.1, a=1 and b= -1 . But

ae e
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£+ £, 0,0,0) = £.9(1,0,0,0) € P;' and by REMARK 4.3

this is not orthogonal to P-l = P_l' . Hence Pl' is

not orthogonal to P_l' and this fibration has no orthogonal

pairs.
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SECTION V
In this final section we initiate a general study of

great sphere fibrations of arbitrary manifolds. All

£ibrations in this section are assumed C° » over a compact

c® base space, and the group of all k-sphere bundles will

be the orthogonal group on :l!k+l s O(k+l).

This section is divided into three parts. In Part 1

that all reasonable k-sphere bundles can be realized as a
fibration by great k-spheres by embedding the total space

in s¥

for N sufficiently large. As a corollary we
derive what this theorem says about embedding the base space
in Grassmann manifolds. The concept of a strongly injective
embedding of an open set, an embedding

®: U—> Hom(Rm,l!n) such that for x £y in U,

®(x) (v) £ @o(y)(v) for all 0 £ v € R" , is introduced and

its relation to great sphere fibrations is discussed.

In Part 2 we examine great sphere fibrations of

m n mén+l
8 - X8 ] . We prove a number of general
e *%ypz = P g

statements about the existence or non-existence of great

58




: m
k-sphere fibrations of 81/ N3 X s;‘/ B depending on k ,

m and n .

Finally in Part 3 we ecxamine in detail great 3-sphere
fibrations of si/ 2 ¥ si/ 2 S s7 . Using the related
notion of strongly injective embeddings we completely
answer the three questions about fibrations posed in
Section I. 1In addition we relate results proved in this

section to great circle fibrations of 53 .

PART 1.

THEOREM B. Let g : Sk -—> B lT-> B Dbe a smooth k-sphere
bundle with group O(k+l) over the compact base space B .
Then the total space E can be smoothly embedded into SN
for N sufficiently large so that each k-sphere fibre
becomes a great k-sphere in SN .
PROOF :

1. Since the group of the bundle is O0(k+1l) there
is an associated Euclidean (k+1)-sphere bundle,
g's :Rk+1 ~>E' —> B, over B such that £ is the
unit sphere bundle of &' . By ([M-S], Lemma 5.3) there

exists an integer p and a bundle map

,\ .

B naaa .k A haoa oa.

.............

Y W
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R L - & o]
.“‘.,‘,:‘./ fl.“_‘. l.-', RO

Je+lppHl K+l p+l

vhere vy is the canonical

fF: g0 —

(k+1) -plane bundle over Gk+1:R p+l

WAXEREH:
12t525%502%

a

B —> E(yHIgP*L

z 2

-~
£

| |

)

FAs
3 :'.""-‘l 3

'
14

a - 1
A £: B —> Gk+1:ltp+

- .

N Now EcCE' and F|E: E —> sP ¢ RP*" so let £=F|E .
> Since f(n-l(b)) = ‘:E'(n'-l(b))n Sp its clear that f(k-sphere
*j fibre) is a great Xk-sphere in Sp , but while £ is an

A embedding on each fibre, f]n-l(b), £ is by no means an

embedding of E in sP .

o 2. If n= 2+dim B , by the Whitney Embedding Theorem
there exists an embedding ¢ ¢ B —> Sn « Consider the

: map

(¢em,£): E —> 8"x sP

o

4 A
¥ %

,l..l'

afetatalat,

N
2 dy

For a, #a in E , if n(al) f 4 n(az) then

2
t-ﬂ(al) f v-n(az). 1f n(al) = n(az) then f(al) * f(az)

»

e |
s "} .

) ‘:»‘:}:l oy ".

»

since £ is injective on each fibre. Therefere (4-m,f)

P ]

2

is an injective map from a compact space E into a

k

Hausdorff space s™x 8 , thus it must be a homeomorphism

¥ & 4 8 » - =
‘.“‘ ..:
PLPLPAT AP

‘n-l'.-

...................................
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: onto its image. :'
3. At a € n-l(x) c E , the tangent space T_E <
o

decomposes into a direct sum, 'raE = '.l'an-l(x)@ Taﬁ where

Sl s T

TaB is transverse to the fibre 11-1 (x), and consequently

Ml d i~

maps bijectively via dm on TxB . Since dfa('ran-l(x)

is injective and d(y-n) a’l‘aﬁ is injective, it follows that

ATATAT

3 (y-£,n) is an immersion.

4. Together the results of 2 and 3 allow us to
conclude that (¢.m,f): E —> snx Sp is a smooth embedding.

The following LEMMA completes the proof of THEOREM B.

g LEMMA 5.1. For any pair of positive integers n and p ,
there exists an N and a smooth embedding of Snx sP

into sN , taking each submanifold (a]x Sr , Where a ¢ sn
and sr is a great r-subsphere of Sp , onto a great

r-subsphere of SN .

PROOF: Let N = (p+l)(n+l)+ p and SNQ :IRN+1 . We show

there is a smooth embedding ¢ : sn -_> VvV p+1mN+l such

that for a£b in S° the (p+1l) -plane {span g(a)]},

[T T s %

', intersects the (p+l)-plane {span g(b)] only at the origin.

. Define ¢ : sn~—> :l!m'lx :RN+1x...x le (p+l

\ copies)

vt ot et vk Comrons
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Ql(xl’...’xml) = sz '(l’o’...’o’xl’..',xn.'.l,o"..,o)

where Xy is in the p+2nd entry.

¢b(x1,...,xn+1) = 1/./2 (0,1,0,...,0,0,...,0,xl,...,xn+1,
o,.oo,o)

. where xy is the p+n+3rd entry.

°p+1(x1’...’xn+1) = VJz (0’..I,o,l,o,...’O’xl,...’xn+1)

where 1 is in the p+lst entry and x

1
is in the p+pn+p+2nd entry.
Let @ = (Ql.’ooo,¢p+1)o .
. p+l
Suppose for (al’°°"ap+1)’ (Bl""’Bp+1) in R
we have
p+l p+l :
= . N+1 n
Ei=l a @ (x) =35, _, B;® (¥) in R , for x,y €S .

Comparing the first k+1 entries on each side it follows
that a; = B; , 1<¢igk+tl . Now if ay = Bj ¥ 0 for
some J , to be specific suppose j = 2 , then comparing
the entries from the p+2n+2+1 position through the
p+2n+p+lin position we get azxi = Bzyi = azyi for all

1 i ntl , hence we conclude x =y .

If we define 1 : Snx sp -_— sN by




. . . .
----------------

P
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pt+l

T(a, (als"',ap_._l)) = E

1 2593 (2) |

then the above shows «r is 1l-1 onto its image. As in

et vs s
s A aa

part 2 we conclude +r is a-homeomorphism onto its image.

Since 1 is a linear map on the second factor it clearly

takes submanifolds of the form {alx s* s & € s" ’ s’ a

great r-subsphere of sP » onto great r-subspheres of SN .

That 1 is a smooth embedding is clear. QED.

Finally, re(¥yem,£): E —> SN is an embedding that

satisfies the requirements of THEOREM B. QED THM B.

COROLLARY 5.2. Given the hypothesis of THEOREM B, the base

space B of a smooth k-sphere bundle has a smooth

embedding in qh+lltr¥k+1 s for r sufficiently large,

such that B is transverse to the bad cone through each

of its points.

PROOF: From THEOREM B we have produced a smooth great

k-sphere fibration of a submanifold, v+ (y.mw,£f)(E) of s .

N

Although we don't have a fibration of all of § Dby great

k~spheres, the identical proof of ([G-W-Y], Theorem 4.1)

carries through to produce the result. QED.

]
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If P is a k-plane in r" s k<n , and P' denotes
the orthogonal (n-k)-plane, and ¢ : U —> Hom(P,P'L) is
an embedding of an open subset U of a manifold X then
since ¢ is injective, for x £y in U, o(x) £ o(y).

So for x £y in U there exists 0 # v € P with

o(x) (v) £ oly) (v).

DEFINITION 5.3. Given the situation just described, we say

@ is a strongly injective embedding if for x #y in U,
o(x) (V) # @o(y)(v) for all O£ v eEP. ¢ is a smooth

strongly injective embedding if, in addition, for all
0#£v €P, the map @, U —> pt given by ¢v(x) = eo(x) (v)

is an immersion.

If B is an embedded submanifold of Gk+11RN+1 such

that B represents the base space of a great k-sphere
fibration of some submanifold E = ( U Q)N S~ =8~ , then
QeB
for all Q € B and coordinate maps
N+1 Iy

®: Y € G R —> Hom(Q,Q7), %IUQn B is a strongly
injective embedding. In addition if B is the base space
of a smooth great k-sphere fibration of E , then B is

transverse to the bad cone through each of its points and

quUQn B is a smooth strongly injective embedding.
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Although these notions will be used more substantively
in Part 3, we present here another interesting corollary to

THEOREM B.

COROLIARY 5.4. Every compact c” n-dimensional manifold
B has a smooth, strongly injective embedding in
Mat (k+1, (k+1) (2n+1)), the (k+1) x(k+1) (2n+l1l) matricies over

IR, for any kX >0 .

PROOF: Apply the theorem to the trivial bundle B x Sk =E .

We may take the identity map for the £ in THEOREM B,

obtaining an embedding (§.m,id): E —> San Sk . If P

denotes the (k+1)-plane spanned by T RRRTL R in
N+1

R s where N = (k+1) (2n+l1l)+ k , then note that the
image of the map «r : Sznx Sk -_— sN of the lemma is
disjoint from P'n SN . Hence B embeds in Gk+1RN+l and

its image lies completely in the coordinate chart centered

at P with coordinates given in Hom(P,PJ'). QED.

We conclude Part 1 by briefly sketching the relation
between strongly injective embeddings, regular algebra
structures on R , and fibrations of szn-l by great

(n-1) -spheres. For a complete discussion of regular

algebra structures on R" andg great n-sphere fibrations

-------
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of szn—l see [YA-2] and [G-W-Y].

Every (smooth) great n-sphere fibration of SZn-l

with base space s gives a (smooth) strongly injective

embedding ¢ : r" —> GL(n,R )U{0} (where we view r"

as the base space sn minus one point). Conversely, every

(smooth) strongly injective embedding

®: R" —> GL(n,R)U{0) (with @(0) = 0) with a

regularity condition on e(x) as |x|| —> « (to assure

differentiability at the fibre at o) gives a corresponding

(smooth) great (n-1)-sphere fibration of sZn-l .

If an embedding ¢ : r" —> GL(n,IR)U{0} is linear
then it is easy to confirm that ¢ is a smooth strongly
injective embedding. For suppose x £ y in r" . Then
w(x-y) € GL(n,IR) so for 0 f, v € " , 0 £ p(x-y) (v) =
= (x) (v)=- o(y) (v) hence e(x)(v) £ o(y)(v). Such a o

gives a regular algebra structure to r" (a bilinear
multiplication with no zero divisors), u : :IRnx r" -_— r"
via u(a,b) = @(a)(b). Also ¢ always gives a great

(n-1)-sphere f£ibration of SZn-l . Setting

) e R2" we get the fibration by

nt+l’ =
the graphs of the linear transformations ¢(a), a € r"

Pm span(el,ez, seey@

viewed as maps from P to P' , along with the fibre pt
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2
Let £ : .‘Rn ~—> IR Dbe the polynomial

x
n,n-1’

)

f(xll’xlz’""xln’x21’°°" xnn) = det ([x

and set V = f-l(O). Note that GL(n,R) = R® - v and

i;li,j=1,...,n
for any strongly injective embedding ¢ : IRn -_— Hom(P,PJ')
(with P as above) with ¢(0) = 0 we must have

e(R")n V = {0].

Using these notions we prove the main result in
([G-W-Y], Section 6). If U is any open neighborhood of 0
in ®R" and ®: U—>GL(n,R)U{0}] is a smooth, strongly
injective embedding with ¢(0) = 0 then we get an associated
linearization dg : r"® —> GL(n,IR)U{0) and hence an
associated regqular algebra structure on R" . To prove this

2 2
we view the tangent space to R"  at the origin, 'I‘oltn ’

as :an itself. Since ¢ is an embedding we have 'rocp(U)
is an n-plane. Suppose O ¢ v €V and v € Toq>(U) . Let
b € s"1 pe a vector such that v(b) =0 (v € V implies
v is a singular linear transformation since det(v) = £(v)
= 0) and let ¢ : (-¢,e) —> R"™ be a smooth curve with
0(0) = 0 and (g0)'(0) = v (so in particular ¢'(0) 4 0).

Then

a, (0) [0 (0) J= 2] (e ()= L slelt)) m)= vm)= 0,
t= t=0
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but this implies @, is not an immersion hence ¢ is not
" h ~ a smooth strongly injective embedding. This contradition

) ) allows us to conclude that the tangent space to 'roq:(U) is

a linear embedding of R” in GL(n,IR)U{O}.

o PART 2.

Throughout this part, by abuse of notation, we let
253 s™x s® denote the submanifold of s™ °*! given by
Ty
3
"y mtl
N m n \ 2 _1

sl/f[ X sl/s/! = {(x1’°"’xmi-n+2)° 2-'>i=1 ¥ =2

i n+m+2
£ P2 x.2 = ']"'] .
N . i=mt2 "1 2
7
oo It should be clear from the context and thus cause no

:Z:; confusion when we write smx sn whether we mean a product
N
of unit spheres or a product of spheres of radius 1/f2' .
It should be remarked that we are examining a
N
"."\'

restricted situation. Trivially, Smx s” always admits a
fibration by m-spheres and n-spheres, so by THEOREM B,
8"x 8" embeds in S' for some N so that these fibres
are great m-spheres or great n-spheres respectively. By

analogy with the case of great 3-sphere fibrations of the
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7-sphere mentioned in Section I, where we saw that there
were many, topologically inequivalent such fibrations, but
vhen we restricted the 7-sphere to s7 all great

3-sphere fibrations were equivalent, we expect that s™x s

should admit a smaller class of great k-sphere fibrations.
mkn+2 m+l . .
Let Py¢ IR -—> IR be the projection on

mn+2 1l

the first m+l coordinates, and pzx R -_ IRn"'

be the projection on the last n+l coordinates.

LEMMA 5.5. A great k-sphere of gmtntl lying inside

Smx Sn gives an isometry from a great k-sphere in Sm

onto a great k-sphere in Sn .

{4 cuts out a great

O-sphere in S2

contained in slx s°.

As such it represents
the graph of an
isometry from

1
1= pl(L) to

pz(L) = g-axis.
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PROOF: First we observe that Sk c s"x s" implies

k < min(m,n). For suppose m = min(m,n) and k > m .

Let P denote the (k+l)-plane spanned by S‘k .

m+n+2) n+l

k+1l+n+l > mn+2 so P and p,(R = R must

2
intersect at least along a line hence there exists

v € skn pz(R n+m+2). This v cannot be in Smx Sn since

"Pz(")ll = |lv] = 1 but for all w € s™x s” ,

Iip, (w) N = “pl(w)“ = 1/J2 . Hence we must have k < min(m,n).

This also shows that P N pl(m'“*“+2)= PN pz(n“‘“‘*z)

= {0] so the maps pllP and leP both have rank = k + 1

and kernel = {0]. Therefore P, = pi(P) is a (k+1)-

mEn+2 )

plane in pi(IR for i =1,2 and P is the graph

of a linear map, Lp , from Pl to P, .

For v € pl(smx s™)n P, , v] = 1//2 and there is a

min+l . 1l
Vo €S NP with pl(vo) =Vv and V = pz(vo) = Lp(v)

€ py(s"x 8. vl = 142 = V1) = It (| hence I is

an isometry. QED.

LEMMA 5.6. If m or n is even then Smx Sn cannot be

fibred by great circles of smo-n+l .

.............

............
.....
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‘:; great circle fibre

P

PROOF: Say WLOG, n is even. Fix x € pl(smx s). 1f
there were a fibration of Smx Sn by great circles then
for each y € pz(smx s“), the great circle f£ibre through
(x,y) € s"x s would project to a great circle sl(y) on
pz(smx sn) through y . Each such circle sl(y) has a
well defined tangent line at y , varying continuously with
y on pz(smx sn) - SE/JE . But n .s even so this is

impossible. QED.

The previous two lemmas combine to give

COROLLARY 5.7. Slx szn has no great k-sphere fibrations

forany n or k>1.

80 very quickly we see that, as we expected,

PP
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~

‘restricting to great k-sphere f£ibrations of Smx s“ does,

in certain cases, considerably eliminate a number of

Ll L L

topological k-sphere fibrations. Without too much more
work we see that we can eliminate much more.
3 If n is even and m ¢ n then we can apply COROLLARY

5.7 to conclude that there is no great m-~sphere fibration

P-4

of Smx sn . For suppose P is the (n+3)-dimensional

plane in 1tm+n+2 ’

VY - sl O

P = {(xl’xz,o.o.’an+2):

Note that P n 8™ = ™2 ang P (8%x 8™ = slxs” .

If there were a fibration of smx s" by great m-spheres
then since each fibre maps bijectively on pl(smx sn),
3 intersecting the fibration with P would cut each fibre

2

down to a great circle in sn+ and give a great circle

fibration of S'x s® . By COROLLARY 5.7 this is impossible

for n even.

In particular we conclude Sznx 82n cannot be fibred

by great 2n-spheres.

& 1AM LEP

What about great (2n-1)-sphere fibrations of

Szn-lx SZn-l ? Clearly, any such fibration is trivial (let

& AR

PG o
2

.
...........................
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2=l o pi(szn'lx 82771y then fix q, € si“‘l and define
2n-1 _2n-1 2n-1 _2n-1
v o8 x8T T —>8T kT by yr@=(5L, o (@)
2o
where L is the isometry from szn-l to sZn—l
r,d, 1 2

determined by the fibre through (r,qo)). If SZn-l

denotes the base space of a great (2n-1)-sphere fibration

4n-1 4n
c

Szn-lx SZn-l cC R then from Part 1 we

of c S

conclude that we have a strongly injective embedding

®: s2n-1 —_ Hom(pl(m4n) »Py (R 4n)) +» Since every fibre

in fact gives an isometry, if we identify the ith coordinate
. 4n . . . 4n

in pl(lR ) with the 2n + ith coordinate of pz(:lR )

we can assume we have a strongly injective embedding

® SZn—l —> 0(2n), the orthogonal group on Rzn « Such

a strongly injective embedding ¢ induces a map

® : szn-lx SZn-l _— SZn-l s (a,b)= g(a) (b). For any
bes®™t, g ,p: 821 5 g2l ang
&b, ): g2n-1 - 521 .re both injective so § has

bidegree (1,1). By a theorem of Adams and Atiyah, ([HU],
Chap 14) we conclude that n=1, 3 , or 7 . Such
strongly injective embeddings certainly exist in these
dimensions, namely the unit spheres in :Rz » 114 and :l!8

considered as the complex numbers, quaternions, or Caley

numbers respectively. Hence we have proven:
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COROLLARY 5.8. S"x 8" can be fibred by great n-spheres

if andonly if n=1, 3 or 7.

Since S4n+1 s N> 1 does not admit a continuous

field of tangent k-planes ([ST], Sect 27.18),

2 <k £ 4n-1 , the idea in the proof of LEMMA 5.6 generalizes

to

LEMMA 5.9. S"'X S4n+1 n>1l, admits no great k~-sphere

fibration for 2 {( k £ 4n-1 .

PROOF: To be specific, suppose we had a great 2-sphere

4n+l ntl) ren for

fibration of Smx s . Fix x € pl(smx s

each y € P, (smx s4n+1) let Tx ys2 be the tangent space
?

to the great 2-sphere fibre at (x,y) € Snx S““‘ . Since

the 2-sphere fibre projects onto an embedded great

2-sphere in pz(smx s4n+1)’ dpz('.l'.' sz) is a 2-plane

X,Y
PY c T ypz (Smx S4n+1) . In this way we get a continuous field
of tangent 2-planes on S4n+1 . But this is impossible.

QED.

Using these general facts we now turn our attention

to some specific low dimensional cases.

1) Great sphere fibrations of Slx sl [ s3 .

Clearly the only possibility is for a fibration by
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‘any such fibration is trivial with base space s1 and it
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great circles. From the discussion after Corollary 5.7,

gives a strongly injective embedding of S1 in 0(2). Now
0(2) = S1 V) s1 , 80, modulo reparameterization, there are
disj

only two possible embeddings of s1 in 0(2) with image

either S0(2) or 0(2)- s0(2). It is easy to see that

either such embedding is a strongly injective embedding.
So the space of great circle fibrations of Slx S1 is just a
2 points, one point corresponding to a fibration by (1,1)

curves (homotopy type of typical fibre in ﬂl(slx Sl)) with

typical fibre of the form

[-:(e. ,e. ): 0L 0L 20}, 0L a<l 2w,

and the other point corresponding to a fibration by (1,-1)

curves, with typical fibre

[J%(eie’ei(-em)): 0 98<K2n), 0La< 2.
2

2) By COROLLARY 5.7, slx s2 admits no great sphere

£ibrations.

3) By LEMMA 5.6 and the discussion after COROLLARY 5.7,
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Szx S2 admits no great sphere fibrations.

4) Great circle fibrations of Slx 53 ;.SS .

s1 typical great

1 circle fibres in

Given a great circle fibration of 83 we get a great
circle fibration of Slx S3 as illustrated in the picture
above. Any fibration of 53 is orientable so assume it

oriented and for y € S3 s, let y* denote that element of

S3 gotten by rotating w/2 radians in the oriented

direction along the f£ibre through y . For each y € 83 ’

S(y) = (== cos8(1,0,q)+ - 8in8(0,1,q*): 0 < 8 < 21)
J2 J2

orery
LRSS

7, H
o

%t Yy A
LN I AL S )

is a great circle of 85 lying entirely in slx 83 . Its

easy to see that the family of all such great circles fibres

D A o
LY .
N

R

L)

~"'\.-‘-.~".'_ "~\ . AN
ool ol o B el o e -




g R gl o A ik i I SRS M M RS A A S N TR L e e e S i M ——— —"ﬂ

) A,
SOOI

77

&
B A B AS AL

Slx 83 .

As a consequence of our work in Part 3 below we will :
see that a great circle fibration can be obtained in a r
natural way from any distance decreasing map from S3 to
82 . Certain of these maps will give fibrations of Slx S3 i
that do not correspond to great circle fibrations of the

83 factor as above. It is not clear whether every great :

circle £ibration of Slx S3 arises from a distance

3

decreasing map of S to 82 so this remains a basic open

question.

5) Great sphere fibrations of 82x 83

The only possibility is for a fibration by great

2-spheres. In Part 3 below we completely catalogue all

great 3-sphere fibrations of s3x S3 . Suppose we have a
great 3-sphere fibration of 83x S3 c S7 . Let S6 c S.7
be given by S6 = S7n e.' . Note that Szx 83 =(83x 83)

1
Nne . Exactly as in the discussion following COROLLARY
1l

5.7 we conclude that any great 3-sphere fibration of
E? S3x 83 s desuspends, via intersection with el* to a great

2-sphere fibration of Szx 83 .

Conversely, we now show that any great 2-sphere
3

RV

£ibration of 82x s can be extended in one of 2 distinct

.0

N
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ways to a great 3-sphere fibration of Ssx 83 . By LEMMA
5.5, a great 2-sphere fibre gives an isometry from the
. 2 .3 2 .
first factor S xS =S tc a great 2-sphere in
. » Py ) 1//Z g P
3 3 . .
P, (S"x 87) = 81/ 5 . If we view the first factor as
e s 3 2
sitting inside S then the isometry from S into
d V) 1.2

Si/ JZ extends in only one of two ways to an isometry from

3 3
sl/ﬁ to sl/‘\,z- [

Fep(ss)

£ has two suspensions to an isometry from
3 2_ .3 3

S to S x§8 s determined b
y/z o P80 =8, Y

a—>x, or a-—>x, .

8o suppose given a great 2-sphere fibration of
szx 83 S 86 [ R7 where R 7 c ]Re as el"' (all first

coordinates zero).
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s2 —> s?xs° By

Let a, = (OM/E/Z:O:O): a; = (O,O,J.Z_/Z,O),'a4 = (030:09«/5/2)

be 3 points in pl(Szx 83). For each x € B

-1 4 4 2

pr (x) = [Zi=2 ai(ai,xi)z Ei=2 a;” = 1,
2 3 .

xz,x::‘,x4 € pz(s x 87) with

2

,,/'2_ (xz,x3,x4)

3-frame in IR

an orthonormal
4
]

So the correspondence x —> 3_-(x2,x3,x4) embeds B in

V3R4 and any such fibration of szx s3 is trivial with
B = S3 .

Now we have a fibration So —_— \74:IR4 -9-> V31R4 where
q applied to any 4-frame simply ignores the first vector
of the frame. This is just the double covering,

v4m"' = 0(4) =~ SO(4) U 8S0(4) and v3n4 = 50(4). So the
disj 2 3

base space B of our great 2-sphere fibration of S x S
has 2 distinct (otherwise unique) lifts to V4:IR4 . Suppose
we lift B to 50(4) g VR, p: B —>50(4). Let

a = (../.2-/2,0,0,0), and q: B —> 83 s 114 the map
gotten by projecting the 4x4 matrix p(x), x € B , onto

its first, second, third, or fourth column vector

""""""""""""""""
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respectively. For each x € B we get a great 3-sphere in

S7 c JRS s lying entirely in s3x 53 s

4 1 4 5.
— ——— - v -
x => (&, ai(ai’ﬁ q ) Ly, @ =1)

Suppose two such great 3-spheres intersected. This

means
1 4 1 4

4 2 & 2
where Ei=l a;” = E:i.=1 B;"=1, and x £y are both in

B . Immediately we see a; = By » 1LigK4, and if

a= (al,az,a3,a4), then p(x)(a) = p(y) (a), where p(x)
and p(y) are elements of SO(4). But if two elements of
S0(4) agree at one non-zero vector, they in fact agree

along an entire 2-plane in :R4 (Alv = sz R Al ’ Az

. -1 -1 'y i
in 80(4) implies Az A1v= v 8o A2 Al VS =S v

and Az-lAllv"' € SO(3) hence 30 £ w € v’ with
2-1A1w = w). So there must be a vector of the form

(0,7,,¥55¥,) = ¥ €5° with p(x)y = p(y)y . Hence

A

4 4
J%((O.vz.vyu) Tyy v49; ()= :/l_-((o,vz.v3,y4) Ty, 49, (9)
2
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and pr‘l(x)n pr_l(y)‘f § . This contradicts the fact that
pr is a projection of a fibration and x # y . Therefore

no two such 3-spheres can intersect and the family of all |

such great 3-~-spheres fibres s3x S3 . Clearly if we apply {

the process of intersecting this fibration with el* we

recover our original great 2-sphere fibration of Szx 83

hence these two operations are inverse. 1
Had we lifted B to 0O(4)- sO0(4) we would have

obtained another fibration of S3x 83 . So in summary we

have the CONCLUSION: There is a 2-to-1l correspondence

between great 3-sphere fibrations of S3x 83

2-gphere fibrations of Szx 83 . Therefore all the results

and great

we obtain in Part 3 pertaining to great 3-sphere fibrations

of 53x 83 can, with minor modification, be applied to

great 2-~-sphere fibrations of Szx 83 .

6) Great circle fibrations of 53x g3 [ S7

oy . Let

Tad

» %4

S S Dol o3

%

e

=i {9 {9
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be any two oriented great circle fibrations of pi(SBx s3),
i=1 and 2 respectively. Given a great circle fibre

on the first factor and one on the second factor their ;

product is an Slx Sl < 83x 53 c s7 . By (1) this Slx Sl

admits a unique fibration by (1,1) great circles (since

the fibrations are oriented the notion of (1,1) makes

sense on all such Slx sl [ 33x s3) . In this way we can

asgsociate to any pair Fl and F2 a great circle fibration
of 83x s3 .

As in paragraph (4) above there remain unanswered

N ST

questions here also. Are all great circle fibrations of

83x 83 obtained by a product of two such fibrations of

TN

the factors?

7) Great 2-sphere fibrations of S3x S3 .

None of the above lemmas address the case of

fibrations of 83x 83 by great 2-spheres. From the Gysin

FWES WOFT R
AR
PR A

e Y )

sequence we can settle this case by proving that in fact

S3x 83 does not even admit a topological £ibration by

_2-spheres.
i 2 < QR 4
s Suppose we had a fibration, §° —> 8" x 8" —> M .
8ince s3x 83 is simply connected and s2 is path

connected u‘ must be connected and simply connected, hence

ety TS 5 5 00 SRR
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Ho (M, =X and the fibration is orientable. The Gysin

sequence of our hypothetical fibration gives:

— B2 — 13 (sx %) — P h— mbh
1 I I

0 0 0

So by exactness we must have H3(M4) = 0 . But another

segment of the Gysin sequence gives:

—> B2y — #?(s3x ) — B — P h—>

I l

0 Zz

So the conclusion H3(M4) = 0 destroys the exactness of
this segment. Hence such a fibration cannot fit into a
Gysin sequence so it must not exist. Therefore S3x 83

admits no great 2-sphere fibration.

8) Examples of Smx Sn which admit no great k-sphere

fibrations, k > 0 .

SAFLISSY 3 PRSI
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PART 3.

In this part we examine in detail the case of great

3-sphere fibrations of 83x 83 ;_87 . From Part 2, we

know that such a fibration is trivial with base space s3

and it gives a strongly injective embedding of 83 in

0(4). Conversely, suppose @ 3 33 —> 0(4) is a strongly

3, the set [=(b,q(x) (b))

3 W2 3.3
b € 87} is clearly a great 3-sphere that lies in S"x 8" .

injective embedding. PFor x € §

Since the embedding is strongly injective, for fixed

b € 83 , the map from 83 to s3 » X —> o(x)(b), is

injective hence a homeomorphism. So for (b,a) € s3x S3

there is an x € §° guch that @(x) () = a. Also ®

!. ' is a strongly injective embedding implies, for x £ y ,

. (Graph e(x)Nn 87)n(Graph o(y)n S7) = p . Therefore we
conclude: There is a bijective correspondence between
(smooth) great 3-sphere fibrations of 83x 83 and the

- image in 0(4) of (smooth) strongly injective embeddings

@: 8 —>o0(4).

' i 80 our approach to studying great 3-sphere fibrations
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of s3x 83 will be to analyze the equivalent problem of

R

el

3
>
:
-
-
-,
<,
-l
.
o
ol
.

strongly injective embeddings of 83 in 0O(4). 8Since 0(4)
has two connected components, we lose no generality by

restricting our study to strongly injective embeddings of

83 in s0(4). It is well known that SO(4) = 83x :RP3

hence S0(4) has 83x S3 as double cover. In all that

follows we identify :IR4 with the quaternions in the usual

manner and S3 will represent the quaternions of norm one.

With these identifications we get the double cover

projection h : Sax 83 —> S0(4)

h(u,v) (x) = uxv (gquaternion multiplication)
Suppose T : s3 —> S0(4) is a strongly injective

3

embedding with E’lz §° —=> S3 given by ?51(v)= B(v) (1).

Since P is a strongly injective embedding, ‘51 is

injective hence it is a homeomorphism. Let

avﬂ"l

P P 83 —> 50(4). 1f w=='51-1(v) then
~-1

W) (1) = v and P (V) = @(v)(1) = [‘5-:91 (v))(1) =

= P(w)(l) = v . Now o is just a reparameterization of ¢
" hence 1Image o = Image § and ¢ is a strongly injective
embedding which determines exactly the same great 3-gphere

fibration of 83x 83 as ¥ . So given a strongly injective

..................
.................
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embedding o s 83 —> S0(4) we may and shall assume that

¢1(v) = v for all v ¢ 53 .

We have

.
-
1
.
‘

)
4

4

, L h (double cover)

4

s3> 2.5 go0(4)

Since 83 is simply connected ¢ 1lifts to a map

o 53 -_— 83x 83 such that h.d = ¢ . ¢ is unique up

to choice of base point lying over say e(l). So

&(v) = (£(v),g(v)) € S3x S3 and

v = epl(V) = @(v) (1) = h(£(v),g(v)) (1) = £(v)g(v)

Therefore g(v) = [f(v)]-lv and g depends uniguely on
£ which depends, modulo choice of h-1¢(1), on the

strongly injective embedding ¢ . So strongly injective

embeddings depend only on a single map f : 83 —_ s3 .

Now we address the question: What criteria are there

3.3

to guarantee that a 3-sphere embedded in S"x § projects

via h to the image of a strongly injective embedding?

let 4 : 83x 83 ~—> [0,n] denote distance on the

TR, e e e . e N c e
T P O S A
B e T e T N e T L T e e
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unit sphere s3 s d(x,y) = least value of the length of the
great circle ar joining x and y . Since multiplication
by a norm 1 quaternion is an isometry of 83 s, wWe get

immediately,
d x,y) = d(xq,yq) = d(gx,qy) for all x,y,q € S3

LEMMA 5.11. A necessary condition for h(x,y)(w)= h(u,v) (w)
for some w € s3 is that d(x,u) = d(y,v).
PROOF: XWy = uwv e xwyv.1 = uw , 80 d(x,u) = d(xw,uw) =

= d(xw,xwyv-l) = d(l,yv-l) = d(v,y) = d(y,v). QED.

LEMMA 5.12. h(x,y) € SO(4) has a fixed point (+1 eigen-
value) if and only if d(x,1l) = d(y,1).
PROOF: (=) h(x,y)(w) = w = h(1,1)(w) so by LEMMA 5.11,
d(x,1) = d(y,1).

(=) If x = 21 then d(x,1l) = d(y,l) implies
y = 21 and both h(l,l1) and h(-1,-1) have fixed points,
8o the conclusion is true for x = 1 .

For x s 21 , suppose d(x,l) = d(y,l) = ¢ with
0<c<mn. Let R denote the quaternion on the great
circle through 1 and x with d(1,2) = w2 (R € 1') and

3

d(x,R) < /2 . We recall that S0(3) = IRP° and one way

to make this identification is to conjugate by norm 1
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quaternions and this action

restricted to the unit 2-sphere
3

in 8 of quaternions with real

part 0. So there exists w ¢ S3

1

such that w x w=¢ .

Now conjugation by w is an isometry of 83 fixing
21 so it takes the great circle through 1 and ;:I to the

great circle through 1 and ¢ .

But d(l,w-lx_lw) = d(w,x-lw) = d(l,x-l) = d(x,1) =
= d(y,1) and w2 > d(x-l,::I) = d(w‘lx'lw,w'lflw) =

-1

= d(w-lx-LW,ﬁ) together imply we must have y = w % Lw .
This implies w = xwy = h(x,y)(w) and h(x,y) has a fixed

point. ' QED.

THEOREM 5.13. Given X,y,u,v € 83 s h(x,y) (w) = h(u,v) (w)
for some w € 83 , if and only if, d(x,u) = d(y,v).
PROOF: (=) LEMMA 5.11.

(=) d(x,y) = d(y,v) implies d(L,x Tu) = d(x,u) =
- d(y,v) = d(l,vy-l). So by LEMMA 5.12, there exists

w €SS with w= h(x-lu,vy-l)(w) = x"luwvy-1 hence

h(x,y) (W) = xwy = uwv = h(u,v) (w). QED.

This is the key result we were after and we will see

S, ) AR

:J.‘.’
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shortly that it will allow us to completely characterize
strongly injective embeddings of 83 in S0(4). Before
we do that, however, we digress momentarily to reconsider
great circle fibrations of slx 83 and settle a claim made

in part 2, paragraph 4.

Recall that we saw in Part 2, paragraph 4 that every

great circle fibration of 83 gave rise to a great circle

fibration of Slx s3 by "lifting" each fibre so that as we

went around the great circle in 83 we also went around the
first factor, S1 « Projecting such a fibration onto the
second factor recovers the original great circle fibration

of the second factor. The question asked was whether every

great circle fibration of Slx 53 projects to a great circle

3

fibration of 8" . As in LEMMA 5.6, if we fix p = (%% ,0)

on the S1 factor, every great circle fibration of Slx 83

gives us a vector field on the s3 factor. For each

q € 83 , the f£ibre (which we assume oriented) projects to a

great circle through q on 83 and we take the unit tangent
vector to this circle at q , call it F(q). Clearly, F(q)

is just the projection on 83 of the point on the £ibre

throuwgh (p,q) whose projection on s1 is (0,%?§.

Conversely, given a unit tangent vector field F : s3 -_— ss,

e Lt .
~~~~~~~~~~~
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FP(q) € q* , We would try to fibre slx 53 by taking the

collection of great circles on ssz

sl(q) = [cose(%% ,0,q)+sine(0,f%',r(q))= 0< 6 < 2n)

for all q € pz(Slx 83). Of course for arbitrary F this

collection will not fibre Slx S3 . As a minimum F must
be injective for if F(ql) = F(qz) then

(O,Jz: F(ql)) € Sl(ql)n Sl(qz) and two "fibres" would

2 14
intersect. If F is injective then no two such great
circles in Slx 53 will intersect at 8 =0 and 2n and
8 ='§ and %f . Since two or more such great circles

intersecting is the only thing that would prohibit this

family from f£ibring Slx s3 we conclude:

53 -_— 53 s F(g) € q* for q € S3

If F: , and if we

define H : [0,2n]x 83 -_ s3 by H(g,8) = cosf-q +

sing*F(q) then the family of great circles in s5 :

Sl(q)- {%(cose,sine,n(q, 8)): 0 < 6 < 2n) for all q € g3 ,

3 3

3 if and only if H( ,8): S —> s8> is

£ibres slx S

injective for all 0 6 £ 2n .
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For q € 53 , the imag of g under H as 6 goes from 0

to 2qn is clearly a great circle of 83 and this great
circle is just the projection of sl(q) on the second i
factor. So we are seeking a map H as above such that

H( ,0) is injective for all 6 yet the flow of H does

not determine a great circle fibration of 83 .

R,

A

First note that there is a bijective correspondence

between smooth, unit vector fields on s3 and smooth maps

83 -_— s2 where 52 [l 83 and s2 represents the purely

imaginary norm 1 guaternions. Given F as above, define

£ : 83 -_> 32 by £(p) = p-lr(p) (quaternion multiplica-

:
|

tion). Note that 'g'- a(p,F(p)) = d(l,p-lr(p)) hence
Im £ ;82 . Conversely given £ : s3 -_— s2 , let

P 83 -_— 83 be given by F(p) = pf(p). 1Its clear that

F(p) € p* .
In terms of £ the map H above is given by

H(p,6) = cosf-p + 8inb pf(p) = p(coss+ sind £(p)).

bl BR LA A > O I o s o i

For each p and 6 we get an element of 8S0(4):

(p,8) —> h(p,cos8+ 8ing-£(p)) € §0(4).

! For brevity we denote this element by h(p,6).
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< o |
§ If H is not injective for some value Bo of 6 then :
4 H(p, 8,) = H(q, eo) for p ¥ q and consequently 3
L - ‘ :

.‘ i
- h(p, 90) (1) = H(p, eO) = H(q, 90) = h(q, 90) (1). (*) ;
9: ::
4 So by THEOREM 5.13 we conclude {
; a(p,q) = d(coseo+ sineof(p),coseo-l- slneof(q)) . i
3 ;
” Now as 0 goes from O to 2m , cos® + sind £(q) goes
around the great circle through 1 and £(q), hence

d(cos 8+ sing-£(p),cos0+ 8ind-£(q)) < d(£f(p),£(q)) Vo
and if £ is distance decreasing, then for all p £ q and
all o

1
X d(p,q) > d(£(p),£(q)) > d(coso+8ing £(p),coso+ 8ind £(q)).
- Therefore, again by THEOREM 5.13,
2
A H(p,8) = h(p,08) (1) # h(q,6) (1) = H(q,6)
4 and H( ,0): 83 -_— 83 is injective for all values of § .
It £ : 83 -—> {i) ¢ s2 is the constant map then one
@
‘ can easily check that the flow along the related map H
"T
z ‘
é" determines a great circle fibration of 83 (the Hopf
g
3
e T N W e N e T e T T P e T T e T e T e e e e T el e e e e
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fibration). Now let £ be a perturbation of £ in a
neighborhood of 1 such that it is still distance decreasing
. and F(x) =i for all x with d(x,1) > /4 and F(1) 4 i
Since ¥ is distance decreasing 'If( 20):2 83 _— 83 is

still injective for all ¢ , however, if
B(1) = {H(1,0): 0 < 8 < 2n), S(i) = (H(i,0): 0 < 8 < 2m)

then 1e“s'(1)n S(i) bvut T(Q) £B(i) since i € F(i) but

i £8(1). Therefore H does not determine a great circle

f£ibration of 83 . But for each q € s3

8(q) -‘{%(cose,sine.‘if(q, 8): 0< 8 2n)

is a great circle in slx s3 [ S5 and H( ,08) injective

implies the family of all such great circles fibres slx 83 .
:
8o for every distance decreasing map £ : g3 -_> g2 ;
we get a great circle fibration of Slx 83 . Unfortunately,
: ]
9

in equation (*) above we are only applying the element

h(p,8) € 80(4) to the vector 1 ¢ 83 8o we cannot apply
the converse of THEOREM 5.13 to conclude that H( ,8)
injective for all ¢ implies the related map f£ : 83 -_— s2 :

is distance decreasing. Whether this is so or not remains

ety

- CET )
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an interesting, open question.

* Now we turn our attention back to using THEOREM 5.13

to study strongly injective embeddings of 83 in 8S0(4).

THEOREM 5.14. A submanifold of 83x 83 corresponds to the
image of a strongly injective embedding of 83 in 8s0(4),
if and only if, it is the graph of a smooth distance
decreasing map ¢ <from either 83 factor to the other.
PROOF: Using THEOREM 5.13, the proof is identical to ([G-W],

Theorem A) .

THEOREM 5.15: ¢ : 83 —> 80(4) is a smooth strongly

injective embedding if and only if the corresponding distance
decreasing map ¢ is differentiable with {dy] < 1 .
PROOF: (=) By THEOREM 5.14, ¢ corresponds to a smooth
distance decreasing map ¢ from one factor of s3 to the
other. Therefore we have |dy| <1 .

Suppose dy = 1 at some point (u,v) € 83x 83 R
v = §(u). Left and right multiplication in the Lie group

83 are both diffeomorphisms of norm 1, so replacing h by

1x,yv-1) we may and shall assume (u,v) = (1,1).

h(x,y) = h(u”
|ay] = 1 implies there is a parameterized curve

s (-6,8) —> 83 5 0(0) =1 , '(0) = V with ]V] =1

LTI ]
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such that |(4.0¢)'(0)] = |V] = 1 . We assume ¢ traverses

a portion of a great circle, and by a conjugation action

applied to the first factor which rotates the purely

imaginary 2-sphere we can suppose ¢@(t) = cos t + i sin t .
Now 4:0(t) = 4, (t)+ 4, (t)i + 45(t)F + 4,(t)k , with

$(0) =1, 4,(0) =0 2<ig<4; y,'(0) =0, v,/ (0% +

+ 3024 g @1

The matrix for h(e(t),¢.o(t)) € S0(4) is given dby:

cos t -sin t 0 0 r;l(t:) -vz(t) -03(1:) -*4“:)1
n“:)_s.’n.ni: cos t 0 0 Qz(t) '1(1:) 14(1:) -v3(t)
v) 0 cos t -sin t va(t) -u(t) ¢1(t) yz(t)
L.O 0 sin t cos t :4(t) ¢3(t) '2“') '1(th
0-1 0 O
a 1 0 0 O
at t_on‘t) “fo o o-1]"°*
0 0 1 O
= [ | - L} - [ ] Y
0 "2 (0) t3 (0) A (0)
Vz'(o) 0 t4'(°) “t3'(0)
+1 1,'(0) -4,'(0) 0 1,° (0)

*(0 *(0) ~¢,'(O 0
13'(0) 4" (0) -¢," (©)

.............
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. “1-4,"(0) ~4,'(0) -y,'(0) |
. - (14, (0) 0 ' (0) =45 (0)

t. 43°(0)  =y,'(0) 0 =1+, (0)

1,700 43'(0) 1=y, (0) o

It is a straightforward but tedious calculation to compute:
- K - (= 2 2 ¢ toy 24 2
ot ] moB(t) ] = (=244;" (0) 4451 (0) T4y, " (0)F) 7(5.15.2)

8o [(4:9)'(0)] = |e'(0)] = 1 implies dct[agé-it_o H(t)] = 0 .

let w € 83 be a vector such that

1 r®)IW =0
L P

Now we suppose ¢ 3 83 —_— 83x 83 is given ¢ = (id,y).

Then we get

(ag,), (V) = f;‘t.o ®,0(t) = fqt-o h(g(t), yo0(t)) (W) = |

= [;,q; H(t))(w) =0 (5.15.2)
t=0

hence Re is not a diffeomorphism at 1 ¢ 83 « Therefore

o 1is not a smooth strongly injective embedding.

(=) We already know that given a distance decreasing

AN & a2z

--------
..............
. A e T T
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map ¢ @ 83 — s3 we get a strongly injective embedding,

Q: 83 —> 80(4) , o(x) = h(x,y(x)). It remains to show
that |dy] < 1 implies @ is a smooth strongiy injective
embedding.

Suppose @ is not a smooth strongly injective

3

embedding. Then for some w € §™ , Ry is not a diffeo-

morphism. Hence there is a point p € 83 and a unit

vector V € Up83 (unit tangent space at p) such that
(dq;w)p(v) = 0 . By an argument completely analogous to
that at the beginning of the "if" part of the proof, we may
suppose p = §(p) =1 and V is the unit tangent vector
to the curve o(t) =cos t + isint at ¢t =0.

So we can apply equation 5.15.2, this time knowing
(d%)l(v) = 0 to conclude :_t £=0 H(t)]J(w) = 0 . By
(5.15.1) we must have [-1+4,'(0)2%+4;' (00244, (%)% = 0

A

nence | (4:0)'(0)}% = ¢,' (@2 + ¢, (@2 + 4, (@2 = 1 ana

lag] =1 . QED.

.i‘"i‘ AN DR
2 o W e

YT

THEOREM 5.16. Any great 3-sphere fibration of sax 83

must contain some orthogonal pair of fibres.

PROOF: Corresponding to any great 3-sphere fibration of

83x 83 is a strongly injective embedding ¢ : 83 -—> 80(4).

Corresponding to ¢ is a distance decreasing map
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¢t 83 -—> 83 , mapping one factor of the double cover of
S§0(4) to the other, say WLOG, the first to the second.

¢ distance decreasing implies -y(x) £ Im §y for any
x € s3 so ¢ is not surjective. By the Borsuk-Ulam Theorem,
there exist Zu in the domain of § such that

t(u) = §(-u). Let P:m denote the fibres over iu ,

P = {IT_(V,*'.IV'(G)): v € 83}.

. Jz
For V = (v,uvy(u)) € Pu and W = (w,-uwy(u)) € P-u we
compute VW . Note that for guaternions, a = a, + azi +
+_a3j+a4k.and bab1+bzi+b3j+b4k,ke(ab)=a1b1+

+ azbz + a3b3 + a“'b4 = a*b , hence

V'W = Re(vw) + Re(uvy(u) (-uwy(u))) =
= Re(vv;-uvﬂu)m);ﬁ) = Re(vw-uvwu) =

= Re(ww) - ne(uvv'iru'l) = Re(vw) - Re(vw) = 0

(recall that conjugation by a norm one quaternion fixes the

real axis hence Re(uv;m-l) = Re(vw)).

Therefore we have shown Pu = P_u‘L . QED.

From these three theorems we see a very strong

analogy with great circle €ibrations of 83 and the work

....................
..........
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of [G-W]. To keep this analogy going we would like to

distinguish a certain “nice"” subspace of the space of all

great 3-sphere fibrations of s3x s3 and call them Hopf

f£ibrations.

If we take the Hopf fibration of s7 by great 3-
gp heres as the graphs of left multiplication in H
(described in Section 1IV) and restrict to graphs of norm

one quaternions, then clearly these 3-spheres fibre

83x 83 . This fibration corresponds to the distance

decreasing map ¢ : s3 -—> 1 € 83 (Eirst factor to the

second). Certainly this fibration of 83x S3 should be

called a Hopf fibration. As in [G-W], any orthogonal
transformation of this fibration (which still fibre S°x S°)

should also be called a Hopf fibration. Those orthogonal

transformations which f£ix s3x 83 are of the form
[Al 0 ] where A, € 0(4).
0 A, i

Restricting to the special orthogonal group, so we
stay in the class of strongly injective embeddings of 83
in 80(4) suppose first that Ai € SO(4) for i =1 and

2 . In this case we can represent the action of such a

transformation as
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(a,b) —> (xay,ubv) £for (a,b) € 83x 83 [~ 87

wvhere x , y, u and v are elements of 83.

f P, = {L_ (c,xc): ¢ € 83] is a great 3-sphere

of our Hopf fibration, then under the transformation given

above

P.—> {-1: (xcy,urcv): ¢ € 83]

- {% (c’, (urx ey Iv)): e' € 8°)
J2
So the distance decreasing map corresponding to this new
gibration is §'(w) = y v = constant.
Suppose now Ai € 0(4)-S0(4) for i=1 and 2.

We get

1

La,2%) = (a2t a,'a%)

(al,az) —> (aya
i i i i i
vhere if a" = (al 28y 5837 ,2, ) then
ai = (-ali,azi,aai,a4i), i=1 and 2, and Ai' € S0(4),
i=1 and 2 . 8o nothing new happens in this case and we
conclude: Any special orthogonal transformation of the

b
Hopf fibration of 83x ", which still fibres 83x 83 ’

has a corresponding distance decreasing map of the form

.....




101

'(Sa) = constant. Clearly all of this could have been
applied to the "other" Hopf fibration of s7 given by
graphs of right quaternion multiplication so the map

t(s3) = constant can be a map from either s3 factor to the

other.

DEFINITION 5.17. A Hopf fibration of S3x s3 is any great

3-sphere fibration of s3x s3 , which induces a strongly

injective embedding ¢ : 83 -_— sax 83 such that

Img= (83,pt) or (pt,s3).

THEOREM B. The space of all oriented great 3-sphere

fibrations of S3x 53 c s7 deformation retracts to the
subspace of Hopf fibrations and hence has the homotopy
type of a disjoint union of four copies of :IRP3 .

PROOF: Let osm(s”) be the space of distance decreasing

map of s to itself. We give oom(s“) the compact open

or c° topology. Two maps £ and g £from s to
itself are within ¢ of each other provided £(x) and
g(x) are within ¢ of each other for all x ¢ s” . For
£ € oom(s"), £ distance decreasing implies -f(x) £ Im £

for all x € s” so £ is not surjective. By the Borsuk-

Ulam Theorem, there are i#u ¢ Sn with £(u) = £(-u) = u' .
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L.t e .

Por all x € S" , min d(x,%u) g-‘zl , so £ distance
decreasing implies d(£(x),u') <12I hence 1Image £ ¢ open _;
- hemisphere of s” . ;
ILEMMA 5.18. There is a continuous map ¢ : ssm(s“) -_—> s"
such that for each f € ssm(s“), the image £ (Sn) lies in i
the open hemisphere centered at c(f). \.
PROOF: Im £ certainly vaires continuously with £ by the \:
choice of topology on osm(s“) . Let B(f) Dbe the closed ij
ball of smallest radius which contains the closed set Im f .
1) B(f) is uniquely determined by £ . __:
4
1

This follows from the fact that on the unit n-sphere the

intersection of two closed balls, each of radius < w/2

RN, AT & A AV W

is contained in some closed ball of smaller radius.

&+ b

Let c(f) denote the center of the ball B(f) and

R B X

' r(f) its radius.
A 2) r(f) varies continuously with £ . l!
If £ is perturbed by less than @ to g then

r(g) < r(f) + ¢ and by symmetry =r(f) < r(g) + ¢ . "

3) Let B be a ball of radius r< m on S with

center p then for any ball C of radius a , a > r-f ,

inside B with center q , d(p,q) < B . oy

This follows easily since if p £ q@ , then the great
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circle segment from p to ¢q
to 3B has length r . The

portion of the segment from ¢q

to 3B has length > a > r-B8 ,

so the portion from p to ¢

has length < B .

Now for w2 > ¢ > 0 given, let u. be the open ball

about £ , u. = {g € 39!1\(8“): distance from £ to g is
less than €/2)}. Let B be the ball of radius r(f)+ ¢/2
with center c(f), then Image gg B for all g € u‘ ’
hence B(g) ¢ B for all g € u‘ . Now (2) implies

r(f) - ¢/2 < r(g) so (r(f)+ ¢/2) - ¢ < r(g) and by (3)
we conclude d(c(f),c(g)) < ¢ . Since we can find such a :
u‘ for all ¢ > 0 this implies ¢ is continuous.

QED LEMMA.

. SR

Nowwe set n=3 . For any £ € osm(s3), radial

[J
i

contraction of Im(f) to c¢(f) homotopes £ , through

distance decreasing maps to a constant map,

fo: 83 —> c(£) ;83 . By LEMMA 5.18, c(f) depends

continuously on £ 8o this process is a deformation

R . SRR

R

retraction hence um(ss) has the homotopy type of 83 .
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Since 83x 83 is the double cover of 80(4) the

great 3-sphere fibrations of 83x 83 determined by the

two constant maps, fls 33 ~—> p and fzz 's3 - «=p both
from the f£irst factor to the second or vice versa, are
identical. So the family of great 3-sphere fibrations of
s3x 83 determined by strongly injective embeddings

s3 —> 80(4) has the homotopy type of a disjoint

®

union of two copies of :IRP3 . We get two more copies of

RP3 by considering strongly injective embeddings

o: S5 —>0(4)- 50(4). QED.
Except for the last paragraph and part (3) of the

LEMMA, the proof of THEOREM B is essentially identical to

([c-W], Theorem D).
With this theorem we have answered completely, for
great 3-sphere fibrations of 83x 83 the three questions

posed on page 1l:

W R ank]
R A catatatyt,

Mutenlsle

1) Are all such fibrations topologically equivalent?

[

. Yes, they are all trivial.

2) Given two equivalent fibrations, is it possible
to deform one to the other, through the space of
great 3-sphere fibrations of 83x s3 ? Not

necessarily, there are four distinct deformation

.
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.............
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classes depending on whether the base space embeds

in 80(4) or O0(4) - s0O(4) and as the graph of

. a distance decreasing map from the first factor
to the second or vice versa.
Pictorially we may display these four

deformation classes as follows: i

Base space embeds in SO(4),
lifts to s3x S3 as (1,83)

Base space embeds in SO(4)
lifts to s3

x 8> as (83,1) ;

Base space embeds in 0(4)-S0(4),
lifts to S3x s3 as (1,83)

Base space embeds in 0(4)-SO(4),

1ifts to s°x s° as (s°,1)
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3) what is the homotopy type of the space of all

such fibrations? By THEOREM B, the homotopy type

is four copies of JR1>3 .

Given a great 3-sphere fibration of s’ »

3

F 8 —-> S7 -_— 54 s that also fibres 83;( 83 s, We may

take for the classifying map of the bundle F , the map of

3, .3

the base space of the fibration restricted to S'x S into

0(4). By THEOREM B, the homotopy type of such a strongly

injective embedding of 83 in 80(4) is (0,1) or (1,0)

hence we conclude that all such fibrations F are
topologically equivalent to the Hopf fibration.

Now we pose the question: Can every great 3-sphere

fibration of 83x 83 appear as a portion of a great 3-

sphere fibration of s7 ?

We will see the answer is yes. Let

' 8
Po - span(el,ez,ea,e4) S R

[ :li.8 . Our plan is to combine two relatively simple

» and P_ = span(es,ee,e_l,ee)

concepts using the deformation provided in THEOREM B.

;1_ 1) Every great 3-sphere fibration of 83x 83 can

3 -_— 83 is a distance

decreasing map giving a f£ibration of S3x 83 . It is a

be “fattened up”. Suppose ¢ : S

- ‘IA'.
U
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simple matter to check that the family of 4-planes

{p__:2 a€83,0<t<-] where

ta

Pta = {(u,tauy(a)): u € H)

gives a fibration of 87 - (POU PQ) .

Viewed from the perspective of strongly injective
embeddings, we have given a map o : 83 ~—> 0(4) ¢ GL(4,R)
v(ol ¢ Bom(:lt‘,:ll!‘) where ¢ is a strongly injective
embedding. Using the linear structure of Hom(R‘,:R“) ’
we extend o to amap T : 34-{0) —> GL(4,R) via
Fx) = nxllqa(i‘";‘—“) . One can readily confirm that o a
(smooth) strongly injective embedding implies 7§ is a
(smooth) strongly injective embedding. Clearly the graphs
of the image of ¥ are just the family of 4-planes above.

This viewpoint also illustrates that if we include
the 4-plane Po (extend ¢ with @(0) = 0) then while
we have a topological fibration it is no longer necessarily

c®. Of course an analogous problem occurs at P_ .

2) If ¢ 83 -—> constant, c € 83 , then we can

include Po

c =1 this is clear for then the fibration obtained by

and and retain differentiability. 1If

7wy A L 2 P - -
.m0 O R A R R AT B ST
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“fattening up” as in (1) are just the regular Hopf fibrations
(graphs of left or right quaternion multiplication). But

in the discussion preceding definition 5.17 we see that
those fibrations determined by ¢ : s3 —> ¢ are given

by orthogonal transformation, A , applied to JRB that

3, 3

fixes S"x S§° and consequently P, and P_ . Its clear

0
that the result of "fattening up” the fibration

L 2] 33 —> ¢ gives the same fibration of s7 as A

applied to the regular Hopf fibration.

THEOREM C. Every (smooth) great 3-sphere f£ibration of

83x 83 ~ can be extended to a (smooth) great 3-sphere

£ibration of 87 .

Given a great 3-sphere fibration of 83x 83 »

s3

PROOP

- 83 , as usual, be the corresponding

distance Qecreasing map. Let 't’ 83 -_—> 83 s LEI,

let ¢ :

be the homotopy of ¢ , through distance decreasing maps,

to a constant map provided by THEOREM B, with '1 = ¥

and Qo(x) = ¢ for all x € s3 .

Let M: [0,8) —> [0,1] Dbe a c“-function such

that #2(1) = 1 and supportN ¢ (1/2,2). We suppose

IR = Hx H and consider the family of 4-planes:

T T R T s
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3 »

r (P JU{P_JU{P_ ¢+ O < t < «] where

A

9 , Py ™ {(u,tvu*n(t) (v)): ueH].

’y

X Note that for t < l/2 and t > 2, t) is a

3 constant map so the fibration is smooth in a neighborhood

- of PO and P- (by (2) above). With this it is easy to

verify that the above family fibres S’ and the fibration

is smooth if the original fibration of S°x 8° is

3 smooth. QED.

X

N

W As a final application of THEOREM 5.13 we re-prove the
well known fact that the Grassman manifold of oriented

ﬁﬁ 2-planes in n‘ » %’234 » is homeomorphic to szx 82 .

"

From this and some related facts it can be seen that

Theorems A-D of [G-W] are essentially corollaries of our

Y

2 THEOREMS 5-14, 15, 16 and THEOREM B.

<>

' Let s2x g2 s s3x 83 be the set (x,y) € s3x s3

= with Re x=Rey=0 . Let P = {(u,u): ueH];RB.

R

- P is a 4-plane and P is the graph of h(l,l) = id

€ 80(4) as a map from Py to P . 1In general we write

for the 4-plane given by the graph of h(x,y), so

P(an)
(1,1)°

P=mapP
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g
e
"

LEMMA $5.18. R(x,y)' PnP(x,y) is a 2-plane in P for all

(x,y) € s? x s2.

_ '  PROOP: (x,y) € S° x S° implies d(x,1) = d(y,1) so by

Theorem 5.13, h(x,y) has a fixed point w‘e s3. But the

_’.} fixed point set of an element of SO(4) that is not the id-

entity is either 0 or 2 dimensional, hence h(x,y) has a 2-

43 dimensional fixed point set. Since P N P is the fixed

! (x,y)
> point set of h(x,y) we conclude R( x.y) is a 2-plane. QED
[

So if we identify P with R® we see that

g (x,y) € s? x s2 corresponds to a 2-plane R (x.y) in P.

g | Now we'd like to show that every 2-plane in P.arises in
such a manner. This will follow from

;i

o LEMMA 5.19. For any X,y € 53, Y ¢ x*, the system of

.ﬂ equations uxv = x and uyv = y has a solution (u,v) ¢

4 82 x 82 and the solution is unique up to sign.

;3‘ PROOF: y € x* implies y ¥ #x 80 yx T ¢ +l. So there
§ is a unique great circle through 1 and yx']' intersecting
% the purely imaginary 2-sphere in antipodal points +u.
This great circle contains all elements of s3 that commute
g with yx'l 80 uyx'lu"l = yx'l. Consequently,

3 uy (x u-]'x) =y . Now conjugation fixes the purely

i

i

-----
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2 2

imaginary 2-sphere so u € S implies 1.1-:l = «-u €8S

and hence x-lu-lx =V € s2 « Therefore uyv =y and

uxv = x ,

Now #su are the only points of 82 that commute
1

with yx-l e If u'xv'=x and u'yv' = y then y'yx_ u'~
= yx-l 80 u' commutes with yx-l hence u' = zu .,
Therefore our solution is unique up to sign. QED.

LEMMA 5.19 tells us that for any pair of orthogonal

3 2 .2

vectors in 8 , there exists (x,y) € 8" x S such that

the 2-plane spanned by the orthogonal pair is precisely
the fixed point set of the orthogonal transformation

h(x,y). Consequently every 2-plane in P arises as

PNR for some (x,y) € Szx S2 . Because of the

(x,y)
uniqueness statement in the LEMMA we get a bijective

correspondence between 2-planes in P and points of

szx 82/ (x,y) = (-x,-y). If we choose an orientation in

the 2-plane R say, and extend continuously, we get

(i,3i)
a bijective correspondence between oriented 2-planes in

P and.po:l.nts in szx 82 .

Pinally, we'd like to show how the base space of a

3 2, .2

great circle fibration of 8" g P appears in 8 x § .

Prom THEOREM 5.13, if R intersects R(u v) in more
?

(x,y)
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3 than the origin then we know d(x,u) = d(y,v). A priori,
3, however, if d(x,u) = da(y,v), then while we know P(x V)
’
- intersects P (u,v) in more than the origin, its not clear
% 9

: that this intersection need appear inside P . The next
>

= lemma says that this does happen.

X LEMMA 5.20. R intersects R in more than the
_": » (x,y) (u,v)

‘3 origin, if and only if d(x,u) = a(y,v) in szx 82 .

-~ PROOF: (=) THEOREM 5.13.

&

_g () Let S = {w ¢ 83= h(x,y) (W) = xwy = w}. From
3 LEMMA 5.18 we conclude S is a great cirxcle since S is
2 the fixed point set in 83 of h(x,y) € 80(4). For

’ u € s2 s U ¥ &x (where the result is clear), let

S(u) = {z € szz d(x,u) = d(y,z))

b5

4

£

) X
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8(U) is homeomorphic to S . If
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113
F(u) = {z € szz h(u,z)(w) = w for some w € S}

- then by THEOREM 5.13 we conclude F(u) ¢ S(u).

1

But h(u,2)(W) = we uwz =we 2z = w-lu- W 80 we have

amap T : S8 —> F(u), F(w) = wlyly . If we factor ¥

through npl = {[w]: [w) = 4w for w € S} then we get a

map rt 3 mpl —> F(u). 1 must be injective since if
-l -l .
W, Tuw, =W, uw, = z for \J J 2 #wz then A and v,

span S8 and uwz' =w for all w € S . This implies

= {(S,8)) =R so by the uniqueness part of

Rix,y (u,2*)
LEMMA 5.19, (u,z') = #(x,y) and u = #&x , a contradiction.

Therefore 1t is a continuous injection and F(u) is

homeomoxphic to mpl o~ sl , contained in S(u) = Sl . This

can happen only if F(u) = S(u). Since v € S(u), we
conclude v € F(u) and there is a w € 8§ with
h(u,v) (W) = uwv = w = xwy = h(x,y) (w) so

(an)n R(u.V) *

Thus we have established the connection between great

circle fibrations of 83 and distance decreasing maps

y: 82 =82,

.......
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